首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider colorings of the directed and undirected edges of a mixed multigraph G by an ordered set of colors. We color each undirected edge in one color and each directed edge in two colors, such that the color of the first half of a directed edge is smaller than the color of the second half. The colors used at the same vertex are all different. A bound for the minimum number of colors needed for such colorings is obtained. In the case where G has only directed edges, we provide a polynomal algorithm for coloring G with a minimum number of colors. An unsolved problem is formulated. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 267–273, 1999  相似文献   

2.
Let T = (V, A) be a directed tree. Given a collection P{\mathcal{P}} of dipaths on T, we can look at the arc-intersection graph I(P,T){I(\mathcal{P},T)} whose vertex set is P{\mathcal{P}} and where two vertices are connected by an edge if the corresponding dipaths share a common arc. Monma and Wei, who started their study in a seminal paper on intersection graphs of paths on a tree, called them DE graphs (for directed edge path graphs) and proved that they are perfect. DE graphs find one of their applications in the context of optical networks. For instance, assigning wavelengths to set of dipaths in a directed tree network consists in finding a proper coloring of the arc-intersection graph. In the present paper, we give
–  a simple algorithm finding a minimum proper coloring of the paths.  相似文献   

3.
Isaak posed the following problem. Suppose T is a tournament having a minimum feedback arc set, which induces an acyclic digraph with a hamiltonian path. Is it true that the maximum number of arc‐disjoint cycles in T equals the cardinality of minimum feedback arc set of T? We prove that the answer to the problem is in the negative.  相似文献   

4.
If G is any graph, a G‐decomposition of a host graph H = (V, E) is a partition of the edge set of H into subgraphs of H which are isomorphic to G. The chromatic index of a G‐decomposition is the minimum number of colors required to color the parts of the decomposition so that two parts which share a node get different colors. The G‐spectrum of H is the set of all chromatic indices taken on by G‐decompositions of H. If both S and T are trees, then the S‐spectrum of T consists of a single value which can be computed in polynomial time. On the other hand, for any fixed tree S, not a single edge, there is a unicyclic host whose S‐spectrum has two values, and if the host is allowed to be arbitrary, the S‐spectrum can take on arbitrarily many values. Moreover, deciding if an integer k is in the S‐spectrum of a general bipartite graph is NP‐hard. We show that if G has c > 1 components, then there is a host H whose G‐spectrum contains both 3 and 2c + 1. If G is a forest, then there is a tree T whose G‐spectrum contains both 2 and 2c. Furthermore, we determine the complete spectra of both paths and cycles with respect to matchings. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 83–104, 2007  相似文献   

5.
Reducing the transmission time is an important issue for a flow network to transmit a given amount of data from the source to the sink. The quickest path problem thus arises to find a single path with minimum transmission time. More specifically, the capacity of each arc is assumed to be deterministic. However, in many real-life networks such as computer networks and telecommunication networks, the capacity of each arc is stochastic due to failure, maintenance, etc. Hence, the minimum transmission time is not a fixed number. Such a network is named a stochastic-flow network. In order to reduce the transmission time, the network allows the data to be transmitted through k minimal paths simultaneously. Including the cost attribute, this paper evaluates the probability that d units of data can be transmitted under both time threshold T and budget B. Such a probability is called the system reliability. An efficient algorithm is proposed to generate all of lower boundary points for (dTB), the minimal capacity vectors satisfying the demand, time, and budget requirements. The system reliability can then be computed in terms of such points. Moreover, the optimal combination of k minimal paths with highest system reliability can be obtained.  相似文献   

6.
An incidentor coloring of a directed weighted multigraph is called admissible if: (a) the incidentors adjoining the same vertex are colored by different colors; (b) the difference between the colors of the final and initial incidentors of each arc is at least the weight of this arc. The minimum number of colors necessary for an admissible coloring of all incidentors of a multigraph G is bounded above and below. The upper and lower bounds differ by ┌Δ/2┐ where Δ is the degree of G.  相似文献   

7.
Two source-sink (directed) networks are called path-isomorphic if there exists a bijection π between their arc sets that preserves (simple) source-sink directed paths. Although path-isomorphic networks need not be isomorphic (they need not even have the same number of nodes), we show that several properties are preserved. For example, suppose N and N′ are path-isomorphic. Then, N is acyclic if and only if N′ is acyclic. B is the arc set of block of N if and only if π(B) is the arc set of a block of N′. Also, D is the arc set of a dicomponent of N if and only if π(D) is the arc set of a dicomponent of N′. In addition, we prove a dipath version of Whitney's well-known 2-isomorphism theorem for a special class of networks, which includes the acyclic networks.  相似文献   

8.
An arborescence of a multihop radio network is a directed spanning tree (with rootx) such that the edges are directed away from the root. Based upon an arborescence,x canbroadcast a message to other nodes according to the directed edges of the spanning tree. The minimum transmission power arborescence problem is to find an arborescence such that the message can be broadcasted to other nodes by using a minimal amount of transmission power. The minimum delay arborescence problem is to find an arborescence such that a message can be broadcasted to other nodes by using a minimal number of broadcast transmission. In this paper we show that both these problems areNP-complete. The reductions are from the maximum leaf spanning tree problem.Areverse arborescence is similar to an arborescence except that the edges are directed toward the root. Based upon a reverse arborescence, the root node cancollect information from other nodes. In this paper we also show that the reverse minimum transmission power arborescence problem can be solved with the same computational complexity as that of finding a minimum cost spanning tree, and the reverse minimum delay arborescence problem can be solved with the same computational complexity as that of finding a spanning tree.  相似文献   

9.
We consider the following edge coloring game on a graph G. Given t distinct colors, two players Alice and Bob, with Alice moving first, alternately select an uncolored edge e of G and assign it a color different from the colors of edges adjacent to e. Bob wins if, at any stage of the game, there is an uncolored edge adjacent to colored edges in all t colors; otherwise Alice wins. Note that when Alice wins, all edges of G are properly colored. The game chromatic index of a graph G is the minimum number of colors for which Alice has a winning strategy. In this paper, we study the edge coloring game on k‐degenerate graphs. We prove that the game chromatic index of a k‐degenerate graph is at most Δ + 3k − 1, where Δ is the maximum vertex degree of the graph. We also show that the game chromatic index of a forest of maximum degree 3 is at most 4 when the forest contains an odd number of edges. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 144–155, 2001  相似文献   

10.
We study the problem of designing fault tolerant routings in both complete and complete bipartite optical networks. We show that this problem has strong connections to various fundamental problems in design theory. Using a design theory approach, we find optimal f‐fault tolerant arc‐forwarding indexes for all complete networks and all complete balanced bipartite networks. Similarly, we find almost exact values for f‐fault tolerant optical indexes for these networks. © 2005 Wiley Periodicals, Inc. J Combin Designs  相似文献   

11.
We introduce and study backbone colorings, a variation on classical vertex colorings: Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex coloring V → {1,2,…} of G in which the colors assigned to adjacent vertices in H differ by at least two. We study the cases where the backbone is either a spanning tree or a spanning path. We show that for tree backbones of G the number of colors needed for a backbone coloring of G can roughly differ by a multiplicative factor of at most 2 from the chromatic number χ(G); for path backbones this factor is roughly . We show that the computational complexity of the problem “Given a graph G, a spanning tree T of G, and an integer ?, is there a backbone coloring for G and T with at most ? colors?” jumps from polynomial to NP‐complete between ? = 4 (easy for all spanning trees) and ? = 5 (difficult even for spanning paths). We finish the paper by discussing some open problems. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 137–152, 2007  相似文献   

12.
A G‐design of order n is a decomposition of the complete graph on n vertices into edge‐disjoint subgraphs isomorphic to G. Grooming uniform all‐to‐all traffic in optical ring networks with grooming ratio C requires the determination of graph decompositions of the complete graph on n vertices into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The existence spectrum problem of G‐designs for five‐vertex graphs is a long standing problem posed by Bermond, Huang, Rosa and Sotteau in 1980, which is closely related to traffic groomings in optical networks. Although considerable progress has been made over the past 30 years, the existence problems for such G‐designs and their related traffic groomings in optical networks are far from complete. In this paper, we first give a complete solution to this spectrum problem for five‐vertex graphs by eliminating all the undetermined possible exceptions. Then, we determine almost completely the minimum drop cost of 8‐groomings for all orders n by reducing the 37 possible exceptions to 8. Finally, we show the minimum possible drop cost of 9‐groomings for all orders n is realizable with 14 exceptions and 12 possible exceptions.  相似文献   

13.
Given a k‐arc‐strong tournament T, we estimate the minimum number of arcs possible in a k‐arc‐strong spanning subdigraph of T. We give a construction which shows that for each k ≥ 2, there are tournaments T on n vertices such that every k‐arc‐strong spanning subdigraph of T contains at least arcs. In fact, the tournaments in our construction have the property that every spanning subdigraph with minimum in‐ and out‐degree at least k has arcs. This is best possible since it can be shown that every k‐arc‐strong tournament contains a spanning subdigraph with minimum in‐ and out‐degree at least k and no more than arcs. As our main result we prove that every k‐arc‐strong tournament contains a spanning k‐arc‐strong subdigraph with no more than arcs. We conjecture that for every k‐arc‐strong tournament T, the minimum number of arcs in a k‐arc‐strong spanning subdigraph of T is equal to the minimum number of arcs in a spanning subdigraph of T with the property that every vertex has in‐ and out‐degree at least k. We also discuss the implications of our results on related problems and conjectures. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 265–284, 2004  相似文献   

14.
The quickest path problem is to minimize the transmission time for sending a specified amount of data through a single minimal path. Two deterministic attributes are involved herein; the capacity and the lead time. However, in many real-life networks such as computer systems, urban traffic systems, etc., the arc capacity should be multistate due to failure, maintenance, etc. Such a network is named a capacitated-flow network. The minimum transmission time is thus not a fixed number. This paper is mainly to evaluate system reliability that d units of data can be transmitted through k minimal paths under time constraint T. A simple algorithm is proposed to generate all minimal capacity vectors meeting the demand and time constraints. The system reliability is subsequently computed in terms of such vectors. The optimal k minimal paths with highest system reliability can further be derived.  相似文献   

15.
Let ?? be the class of unlabeled trees. An unlabeled vertex‐deleted subgraph of a tree T is called a card. A collection of cards is called a deck. We say that the tree T has a deck D if each card in D can be obtained by deleting distinct vertices of T. If T is the only unlabeled tree that has the deck D, we say that T is ??‐reconstructible from D. We want to know how large of a deck D is necessary for T to be ??‐reconstructible. We define ??rn(T) as the minimum number of cards in a deck D such that T is ??‐reconstructible from D. It is known that ??rn(T)≤3, but it is conjectured that ??rn(T)≤2 for all trees T. We prove that the conjecture holds for all homeomorphically irreducible trees. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 243–257, 2010  相似文献   

16.
Path problems such as the maximum edge-disjoint paths problem, the path coloring problem, and the maximum path coloring problem are relevant for resource allocation in communication networks, in particular all-optical networks. In this paper, it is shown that maximum path coloring can be solved optimally in polynomial time for bidirected generalized stars, even in the weighted case. Furthermore, the maximum edge-disjoint paths problem is proved NP-hard for complete graphs (undirected or bidirected), a constant-factor off-line approximation algorithm is presented for the weighted case, and an on-line algorithm with constant competitive ratio is given for the unweighted case. Finally, an open problem concerning the existence of routings that simultaneously minimize the maximum load and the number of colors is solved: an example for a graph and a set of requests is given such that any routing that minimizes the maximum load requires strictly more colors for path coloring than a routing that minimizes the number of colors.  相似文献   

17.
The hermonious coloring number of the graph G, HC(G), is the smallest number of colors needed to label the vertices of G such that adjacent vertices received different colors and no two edges are incident with the same color pair. In this paper, we investigate the HC-number of collections of disjoint paths, cycles, complete graphs, and complete bipartite graphs. We determine exact expressions for the HC-number of collections of paths and 4m-cycles. © 1995, John Wiley & Sons, Inc.  相似文献   

18.
A tree T is said to be bad, if it is the vertex‐disjoint union of two stars plus an edge joining the center of the first star to an end‐vertex of the second star. A tree T is good, if it is not bad. In this article, we prove a conjecture of Alan Hartman that, for any spanning tree T of K2m, where m ≥ 4, there exists a (2m − 1)‐edge‐coloring of K2m such that all the edges of T receive distinct colors if and only if T is good. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 7–17, 1999  相似文献   

19.
The Steiner problem in a λ-plane is the problem of constructing a minimum length network interconnecting a given set of nodes (called terminals), with the constraint that all line segments in the network have slopes chosen from λ uniform orientations in the plane. This network is referred to as a minimum λ-tree. The problem is a generalization of the classical Euclidean and rectilinear Steiner tree problems, with important applications to VLSI wiring design.A λ-tree is said to be locally minimal if its length cannot be reduced by small perturbations of its Steiner points. In this paper we prove that a λ-tree is locally minimal if and only if the length of each path in the tree cannot be reduced under a special parallel perturbation on paths known as a shift. This proves a conjecture on necessary and sufficient conditions for locally minimal λ-trees raised in [M. Brazil, D.A. Thomas, J.F. Weng, Forbidden subpaths for Steiner minimum networks in uniform orientation metrics, Networks 39 (2002) 186-222]. For any path P in a λ-tree T, we then find a simple condition, based on the sum of all angles on one side of P, to determine whether a shift on P reduces, preserves, or increases the length of T. This result improves on our previous forbidden paths results in [M. Brazil, D.A. Thomas, J.F. Weng, Forbidden subpaths for Steiner minimum networks in uniform orientation metrics, Networks 39 (2002) 186-222].  相似文献   

20.
The local chromatic number is a coloring parameter defined as the minimum number of colors that should appear in the most colorful closed neighborhood of a vertex under any proper coloring of the graph. Its directed version is the same when we consider only outneighborhoods in a directed graph. For digraphs with all arcs being present in both directions the two values are obviously equal. Here, we consider oriented graphs. We show the existence of a graph where the directed local chromatic number of all oriented versions of the graph is strictly less than the local chromatic number of the underlying undirected graph. We show that for fractional versions the analogous problem has a different answer: there always exists an orientation for which the directed and undirected values coincide. We also determine the supremum of the possible ratios of these fractional parameters, which turns out to be e, the basis of the natural logarithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号