首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrolysis of bis(p‐nitrophenyl)phosphate (BNPP) catalyzed by N‐methyldiethanolamine‐Ce(III) complex in the presence and absence of cetyltrimethylammonium bromide (CTAB) and Brij35 surfactants at pH 7.20 and 303 K has been studied. The experimental results indicate that N‐methyldiethanolamine‐Ce(III) complex remarkably accelerates the hydrolysis of BNPP. The observed first‐order rate constant of the hydrolysis of BNPP catalyzed by N‐methyldiethanolamine‐Ce(III) complex at pH 7.20 and 303 K is 1.22 × 10?2 s?1, which is 1.09 × 109 times of that of spontaneous hydrolysis of BNPP at pH 7. It is close to the activity of natural enzyme. A general quantitative treatment of the catalytic reaction involved a ternary complex as MmLlS has also been proposed in this paper. Applying this method to the catalytic hydrolysis of BNPP, we have obtained its thermodynamic and kinetic parameters. CTAB and Brij35 surfactant micelles obviously influence the rate constants of the catalytic hydrolysis of BNPP. Brij35 micelles promote the catalytic hydrolysis of BNPP, while CTAB micelles inhibit it. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 687–692, 2004  相似文献   

2.
A hydroxamic acid (HL) containing benzo-15-crown-5 and their copper(II), zinc(II), cobalt(II) and manganese(II) complexes have been synthesized and studied as catalysts for the cleavage of bis(4-nitrophenyl)phosphate (BNPP). The catalytic properties of these complexes and the kinetics and mechanism of BNPP hydrolysis have been investigated. The kinetic mathematical model of BNPP cleavage catalyzed by these complexes has been proposed. The effects of reaction temperature and metal ion in the complexes on the rate of BNPP catalytic hydrolysis have been discussed. The results show that the hydroxamic acid complexes containing benzo-15-crown-5 exhibit high activity in the BNPP catalyzed hydrolysis; the pseudo-first-order-rate constants of BNPP hydrolysis catalyzed by the complexes increase along with the increases of pH of the buffer solution from 7.50 to 9.50; the activity of different metal ions decreases in the order: Co2+ > Cu2+ > Zn2+ > Mn2+; the pseudo-first-order-rate constants of BNPP hydrolysis catalyzed by the complexes is 2.24 × 105 ~ 3.24 × 105 times as large as that of spontaneous hydrolysis of BNPP.  相似文献   

3.
Abstract

The effects of two metal complexes of 2,2′‐dipyridylamine (bpya) ligand, [(bpya)Cu]Cl2 and [(bpya)Zn]Cl2, in promoting the hydrolysis of bis(4‐nitrophenyl) phosphate (BNPP) have been kinetically investigated in Brij35 micellar solution and at 298 K, pH ranging from 6.41 to 8.6. In neutral micellar solution at 298 K, pH 7.02, the rate constants for the catalytic hydrolysis of BNPP by [(bpya)Cu]Cl2 and [(bpya)Zn]Cl2 are 1.2 × 106 times and 1.5 × 105 times higher than those for the spontaneous hydrolysis, respectively. Kinetic studies show that the active species in the catalytic hydrolysis of BNPP is the aquo‐hydroxy form, and the relative kinetic and thermodynamic parameters indicate that the mechanism of the reaction involves intramolecular nucleophilic attack on the metal center‐bound diester.  相似文献   

4.
Two symmetrical double aza‐crowned Schiff base cobalt(II) complexes were synthesized and characterized, and the metallomicelle made up of the cobalt(II) complexes and surfactant, as mimic hydrolytic metalloenzyme, was used in catalytic hydrolysis of bis(4‐nitrophenyl) phosphate (BNPP). The analysis of specific absorption spectrums of the hydrolytic reaction systems indicated that key intermediates made up of BNPP and Co(II) complexes are formed in reaction processes of the BNPP catalytic hydrolysis. In this article, the mechanism of BNPP catalytic hydrolysis has been proposed based on the analytic result of specific absorption spectrum. A kinetic mathematical model, for the calculation of the kinetic parameter of BNPP catalytic hydrolysis has been established based on the mechanism proposed. The acid effect of reaction system, the structural effect of the complexes, the effect of surfactant micelles and the effect of temperature on the rate of BNPP hydrolysis catalyzed by the complexes have been discussed.  相似文献   

5.

Two novel benzoaza‐crown Schiff base cobalt (II) and manganese (III) complexes were synthesized and characterized. The hydrolysis of bis(4‐nitrophenyl) phosphate (BNPP) catalyzed by the two complexes was studied in buffer solution containing dihexadecyldimethylammonium bromide (DHAB) at 25°±0.1°C and different pH values. The kinetic mathematical model of BNPP hydrolysis was proposed, and the effects of different reaction conditions on BNPP hydrolysis were discussed. The results indicate that the two complexes (MnLCl and CoL) can efficiently accelerate the catalytic cleavage of BNPP in DHAB micellar solution. The pseudo‐first‐order rate constants (k obsd) of BNPP hydrolysis catalyzed by the metallomicelles of MnLCl/DHAB and CoL/DHAB are 2.32×107 times and 1.45×107 times higher than that of the BNPP spontaneous hydrolysis, respectively. Possible reasons for the huge rate accelerations include the lower critical micelle concentration (cmc) of DHAB and formation of metallomicelles made of complexes and DHAB. Furthermore, the BNPP cleavage catalyzed only by the two complexes was investigated in buffer solution. It was found that the hydrolytic rates of BNPP catalyzed only by the two complexes were about 1% of those catalyzed by MnLCl/DHAB and CoL/DHAB systems at 25°C, pH=7.00, and [BNPP]=2.0×10?4 mol · dm?3.  相似文献   

6.
It has been reported that three aza crowned Schiff base cobalt (II) complexes were synthesized and characterized, and the metallomicelle made up of the cobalt (II) complexes and surfactants(Brij35, CTAB, LSS), as mimic hydrolytic metalloenzyme, was used in catalytic hydrolysis of bis(4‐nitrophenyl) phosphate (BNPP). The analysis of specific absorption spectrums of the hydrolytic reaction systems indicated that key intermediates made up of BNPP and Co (II) complexes are formed in the reaction process of BNPP catalytic hydrolysis. The mechanism of BNPP catalytic hydrolysis proposed is based on the analytic result of specific absorption spectra. Based on the mechanism proposed, a kinetic mathematical model for the calculation of the kinetic parameter of BNPP catalytic hydrolysis has been established. The acid effect of reaction system, structure effect of the complexes, effect of temperature and effect of micelles on the rate of BNPP hydrolysis catalyzed by the complexes have been discussed.  相似文献   

7.
The activities of the catalytic hydrolysis of phosphate diester(BNPP)[bis(p-nitrophenyl)phosphate diester]and plasmid DNA (pUC18)by mononuclear macrocyclic polyamine metal complexes have been investigated in this paper.The results showed that the highest activity in hydrolysis of BNPP was obtained with 1e-Zn(Ⅱ)complex(composed of lipophilic group)as catalyst.The hydrolysis rate enhancement is up to 3.64×10~4 fold.These metal complexes could effectively promote the cleavage of plasmid DNA(pUC18)at physiol...  相似文献   

8.
A crowned Schiff base ligand and its cobalt(II) and manganese(III) complexes were synthesized and characterized, and the metallomicelles made from the complexes and micelles (Brij35, LSS, CTAB) were investigated to catalyze the hydrolysis of bis(4‐nitrophenyl) phosphate (BNPP). A kinetic mathematical model for simulating enzyme catalyzing reaction was proposed and employed to analyze the mechanism of BNPP catalytic hydrolysis. Michanelis constant and the apparent active energy for the catalytic reaction were calculated. The kinetic studies showed that the metallomicelle made from the micelle and crowned Schiff base transitional metal complexes is an effective mimetic hydrolytic enzyme for BNPP catalytic hydrolysis.  相似文献   

9.
We aimed to explore the role of chitosan‐based metal complexes in catalyzing the hydrolysis of phosphodiesters. To this end, we performed detailed studies on the kinetics of the chitosan copper complex (CSCu)‐catalyzed hydrolysis of bis(4‐nitrophenol) phosphate (BNPP) in Tris‐H+ buffer and in an organic solvent. A significant enhancement in the rate of reaction (up to 3×105‐fold acceleration) was observed at pH 8.0 (25°C). The pH dependence of BNPP hydrolysis at pH 5.5–9.5 and the UV spectra revealed that the copper‐bounded water molecules underwent deprotonation to form the active catalytic species CSCu‐OH. The kinetic behavior of BNPP catalytic hydrolysis in the Tris‐H+ buffer was consistent with that predicted by the Michaelis‐Menten kinetics model. An intramolecular nucleophilic attack by the copper‐bonded hydroxide group on the same activated phosphodiester substrate was proposed as the catalytic mechanism for CSCu‐catalyzed reaction system. The results of DNA binding and cleavage experiments indicated electrostatic binding mode of CSCu to DNA as well as the strong capability of CSCu to disturb the supercoiled strand of DNA and cleave it to nicked circular form.  相似文献   

10.
A new catalytic system containing an unsaturated heterocyclic nitrogen ligand and lanthanum(III) was constructed and used as a catalyst in the hydrolysis of bis(4‐nitrophenyl) phosphate ester (BNPP) in this work. The results indicated that this catalytic system showed greater catalytic activity in the hydrolysis of BNPP and better reproducibility and stability than other similar lanthanum(III) systems. The catalytic rate of the BNPP hydrolysis was about 107‐fold faster than that of its spontaneous hydrolysis at the same conditions. Compared with the previous Cu(II) or Ni(II) complex containing the same ligand in the water, the activity of the macrocyclic La(III) complex increases ca. 103‐fold for BNPP catalytic hydrolysis. The experimental data showed that the monohydroxy complex made of the heterocyclic nitrogen ligand and lanthanum(III) is the real active species as a catalyst in BNPP catalytic hydrolysis.  相似文献   

11.
Oxamido-bridged dinuclear copper(II) complexes, used as symmetric two-center catalysts for the cleavage of BNPP, were synthesized and characterized. The reaction kinetics and the mechanism of hydrolysis of BNPP catalyzed by metallomicelles, made from complex (A) or (B) and a surfactant (LSS or CTAB), were investigated. A kinetic mathematical model for BNPP cleavage was also proposed. The results showed that the reaction rate for the catalytic hydrolysis of BNPP, compared with spontaneous hydrolysis of BNPP, increased by a factor of ca. 1 × 106 due to the synergistic effect of two copper ions in the complex and the local concentration effect of the micelle. The study indicates that the metallomicelle-containing oxamido-bridged dinuclear copper(II) complex may be a potential catalyst for the hydrolysis of BNPP.  相似文献   

12.
A new β‐cyclodextrin dimer, 2,6‐dimethylpyridine‐bridged‐bis(6‐monoammonio‐β‐cyclodextrin) (pyridyl BisCD, L), is synthesized. Its zinc complex (ZnL) is prepared, characterized, and applied as a catalyst for diester hydrolysis. The formation constant (log KML=7.31±0.04) of the complex and deprotonation constant (pKa1=8.14±0.03, pKa2=9.24±0.01) of the coordinated water molecule were determined by a potentiometric pH titration at (25±0.1)°C, indicating a tridentate N,N′,N′′‐zinc coordination. Hydrolysis kinetics of carboxylic acid esters were determined with bis(4‐nitrophenyl)carbonate (BNPC) and 4‐nitrophenyl acetate (NA) as the substrates. The resulting hydrolysis rate constants show that ZnL has a very high rate of catalysis for BNPC hydrolysis, yielding an 8.98×103‐fold rate enhancement over uncatalyzed hydrolysis at pH 7.00, compared to only a 71.76‐fold rate enhancement for NA hydrolysis. Hydrolysis kinetics of phosphate esters catalyzed by ZnL are also investigated using bis(4‐nitrophenyl)phosphate (BNPP) and disodium 4‐nitrophenyl phosphate (NPP) as the substrates. The initial first‐order rate constant of catalytic hydrolysis for BNPP was 1.29×10?7 s?1 at pH 8.5, 35 °C and 0.1 mM catalyst concentration, about 1600‐fold acceleration over uncatalyzed hydrolysis. The pH dependence of the BNPP cleavage in aqueous buffer was shown as a sigmoidal curve with an inflection point around pH 8.25, which is nearly identical to the pKa value of the catalyst from the potentiometric titration. The kBNPP of BNPP hydrolysis promoted by ZnL is found to be 1.68×10?3 M ?1 s?1, higher than that of NPP, and comparatively higher than those promoted by its other tridentate N,N′,N′′‐zinc analogues.  相似文献   

13.
The catalytic hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) by metallomicelle composed of analogous Cu(II) complex in CTAB micellar solution was investigated at 30 °C and different pH. The results indicate that the analogous complex with 1:2 ratio of ligand to metal ion in CATB micellar solution is the active species for catalyzing the hydrolysis of BNPP. The ternary complex kinetic model for metallomicellar catalysis was employed to obtain the relative kinetic and thermodynamic parameters for taking apart the mechanism of the catalytic hydrolysis of BNPP.  相似文献   

14.
The kinetics of the alkaline hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) have been studied in aqueous DMSO, dioxane, and MeCN. In all solvent mixtures the reaction rate steadily decreases to half of its value in pure water in the range of 0-70 vol % of organic cosolvent and sharply increases in mixtures with lower water content. Correlations based on different scales of solvent empirical parameters failed to describe the solvent effect in this system, but it can be satisfactorily treated in terms of a simplified stepwise solvent-exchange model. Alkali metal ions catalyze the BNPP hydrolysis but do not affect the rate of hydrolysis of neutral phosphotriester p-nitrophenyl diphenyl phosphate in DMSO-rich mixtures. The catalytic activity decreases in the order Li+ > Na+ > K+ > Rb+ > Cs+. For all cations except Na+, the reaction rate is first-order in metal ion. With Na+, both first- and second-order kinetics in metal ions are observed. Binding constants of cations to the dianionic transition state of BNPP alkaline hydrolysis are of the same order of magnitude and show a similar trend as their binding constants to p-nitrophenyl phosphate dianion employed as a transition-state model. The appearance of alkali metal ion catalysis in a medium, which solvates metal ions stronger than water, is attributed to the increased affinity of cations to dianions, which undergo a strong destabilization in the presence of an aprotic dipolar cosolvent.  相似文献   

15.
A new metallomicellar system containing cerium(III), a macrocylic polyamine ligand, and the nonionic surfactant Brij35(polyoxyethylene(23) lauryl ether) was prepared and used as a catalyst in the hydrolysis of bis(4-nitrophenyl) phosphate (BNPP). Catalytic rate of the BNPP hydrolysis was measured kinetically using the UV-VIS spectrophotometric method. The results indicate that the metallomicellar system has relatively high stability and excellent catalytic function in the BNPP hydrolysis; also, the reaction rate of the BNPP catalytic hydrolysis increased by a factor of ca. 1 × 1010 compared to the BNPP spontaneous hydrolysis due to the catalytic effect of the active species and the local concentration effect of the micelles in the metallomicellar system. Experimental results also showed that the mono-hydroxy complex containing the macrocyclic polyamine ligand and cerium(III) is the real active species in the BNPP catalytic hydrolysis, and that the micelles provide a useful catalytic environment for the reaction. On basis of the research results, the reaction mechanism of BNPP catalytic hydrolysis has been proposed.  相似文献   

16.
β‐Cyclodextrin (β‐CD) derivatives 1 with an amino group at C(6), C(3), or C(2) were homogeneously linked together by an ethylenediaminetetraacetic acid (EDTA) bridge (Scheme). Coordination of the linker to metal ions and cooperation of the dual cavities of 3 in binding hydrophobic guests were properly demonstrated by NMR techniques and a fluorescence‐based titration method, respectively. The hydrolysis of bis(4‐nitrophenyl) phosphate (BNPP) in the presence of CeIV complexes of β‐CD dimers 3 was tens of millionfold faster than that in the absence of the CeIV complexes. Hydrophobic binding of the β‐CD cavities was estimated to contribute to the catalysis by a factor of up to 520, and the type of modified sugar unit and the bridging positions influenced this cooperation between the β‐CD moieties and the catalytic metal center.  相似文献   

17.
阳离子表面活性剂金属胶束作为模拟磷酸酯水解酶的研究   总被引:2,自引:2,他引:0  
在模拟水解酶的研究中,模拟模型中配体的功能已经受到普遍重视,冠醚是外腔疏水而内腔亲水的物质,因此已被用作模拟水解酶模型中的配体。这些模型可以分为两类,一是金属离子镶嵌在冠醚环中所形成的穴状配合物模型,二是以冠醚基作为支链的冠醚化Schiff碱配合物。穴状配合物模型作为模拟水解酶用于催化磷酸酯的研究已经取得了一定的进展。  相似文献   

18.
合成和表征了大环过渡金属配合物NiL(L:高氯酸-5,7,7,12,14,14-六甲基-1,4,8,11-四氮杂环十四烷)。配合物NiL与表面活性剂组成的金属胶束作为模拟水解金属酶用于催化BNPP水解。提出了BNPP催化水解的机理;建立了用于计算动力学常数的动力学模型;计算了相关的动力学和热力学常数。结果表明,这种金属胶束表现出较高的催化活性;BNPP催化水解反应是分子内亲核取代反应;所提出的机理和建立的动力学模型是合理的。  相似文献   

19.
The catalytic hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) and p-nitrophenyl phosphate (NPP) by metallomicelles composed of Cu(II) or Zn(II) complexes of bispyridine-containing alkanol ligands in CTAB micellar solution was investigated at 30 degrees C. The experimental results indicate that the complexes with a 1:1 ratio of ligands to metal ions for ligands 1 (1,7-bis(6-hydroxymethyl-2-pyridyl)-2,6-dioxaheptane) and 3 (1,4-bis[(6-hydroxymethyl-2-pyridyl)-2-oxapropyl]benzene) and a 1:2 ratio of ligands to metal ions for ligand 2 (1,14-bis(6-hydroxymethyl-2-pyridyl)-2,13-dioxatetradecane) in CATB micellar solution are the active species for the catalytic hydrolysis of BNPP and NPP, respectively. The ternary complex kinetic model for metallomicellar catalysis was employed to obtain the relative kinetic and thermodynamic parameters, which demonstrated the catalytic mechanism for the hydrolysis of BNPP and NPP by metallomicelles.  相似文献   

20.
The intramolecular nucleophilic substitution of an activated phosphate diester, bis(p-nitrophenyl) phosphate (BNPP) as the nucleic acids substitute, was investigated. A macro-cyclic ligand and the corresponding Cu (II) and Ni (II) complexes were synthesized and characterized. The metallomicelles made up of macrocyclic divalent metal complex and micelle, as mimic hydrolytic metalloenzyme, was used in BNPP catalytic hydrolysis. The metallomicelles displayed higher catalytic activity although they do not attain the catalytic efficiency of enzymes. The analysis of specific absorption spectra showed that the course of the BNPP catalytic reaction was different from that of the BNPP spontaneous hydrolysis, and was an intramolecular nucleophilic substitution reaction. Based on the analytic result of the specific absorption spectrum, an intramolecular nucleophilic substitution mechanism of BNPP catalytic hydrolysis was proposed and a correlative kinetic mathematical model was established, and the corresponding thermodynamic and kinetic constant was calculated. The result of this study proved validity of the mechanism and mathematical model proposed in the article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号