首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Two linear segmented polyurethanes, based on poly(oxyethylene) (POE) as a soft segment and 4,4′‐diphenylmethane diisocyanate and 1,4‐butanediol as hard segments and differing in their soft segment length, have been studied from a water vapor transport point of view. For both polyurethanes, the water sorption is governed by a Fickian process, and the thermoplastic polyurethane with the longer POE segments displays the higher water diffusion rate. The water sorption isotherms are Brunauer Emmet Teller (BET) type III for both thermoplastic polyurethanes, and the water uptakes are directly related to the polymer POE content. The Flory–Huggins theory cannot correctly describe the sorption isotherms. More sophisticated approaches (Koningsveld–Kleinjtens or Guggenheim‐Anderson‐de Boer (GAB) models) are needed to fit the experimental water uptakes. The positive deviation from Henry's law and the decrease in the apparent diffusion coefficient observed at a high activity have been particularly studied. In this activity range, an isotherm analysis based on the cluster integral of Zimm and Lundberg suggests some clustering phenomenon, which seems consistent with the diffusion coefficient variation. In agreement with the sorption results, the water permeability coefficients are small at low activities, and they increase greatly with the relative pressure of water. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 473–492, 2004  相似文献   

2.
A chitosan film with acetylation degree close to 2% was crosslinked with glutaraldehyde. The consequences of this chemical modification were studied on the polymer gas and water transport properties. The crystalline domains were not affected by the crosslinking reaction and the modification of the amorphous phase did not induce variation of the gas permeability at anhydrous state. A crosslinking of 5 h, leading to a theoretical amine conversion of 60% in the amorphous phase induced only small changes of the polymer water sorption capacity at relative pressures less than 0.5. The main modification of the transport properties induced by this treatment occurred at a relative pressure equal to one with a significant reduction of the water sorption and water permeation and with the impossibility to measure the gas permeability coefficient in these conditions due to the brittleness of the membrane. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1521–1529, 2000  相似文献   

3.
The effect of film thickness on the water‐sorption behaviors of poly(3,4′‐oxydiphenylene pyromellitimide) (PMDA‐3,4′ODA) films was gravimetrically investigated and interpreted with a Fickian diffusion model in films. The diffusion coefficient increased with increasing film thickness, whereas the water uptake and the activation energy decreased. Overall, the water‐sorption behaviors of PMDA‐3,4′ODA films are strongly dependent on the changes in morphological structure, which originated from the variation in the film thickness. As the film thickness increased, the molecular in‐plane orientation decreased, consequently leading to the increased diffusion coefficient and decreased activation energy. In contrast, the water uptake decreased with increasing film thickness because of the increase in the out‐of‐plane packing order. The diffusion coefficient and activation energy were strongly dependent on the in‐plane orientation in the films. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 669–676, 2001  相似文献   

4.
The pure‐gas sorption, diffusion, and permeation properties of ethylbenzene in poly(dimethylsiloxane) (PDMS) are reported at 35, 45, and 55 °C and at pressures ranging from 0 to 4.4 cmHg. Additionally, mixed‐gas ethylbenzene/N2 permeability properties at 35 °C, a total feed pressure of 10 atm, and a permeate pressure of 1 atm are reported. Ethylbenzene solubility increases with increasing penetrant relative pressure and can be described by the Flory–Rehner model with an interaction parameter of 0.24 ± 0.02. At a fixed relative pressure, ethylbenzene solubility decreases with increasing temperature, and the enthalpy of sorption is −41.4 ± 0.3 kJ/mol, which is independent of ethylbenzene concentration and essentially equal to the enthalpy of condensation of pure ethylbenzene. Ethylbenzene diffusion coefficients decrease with increasing concentration at 35 °C. The activation energy of ethylbenzene diffusion in PDMS at infinite dilution is 49 ± 6 kJ/mol. The ethylbenzene activation energies of permeation decrease from near 0 to −34 ± 7 kJ/mol as concentration increases, whereas the activation energy of permeation for pure N2 is 8 ± 2 kJ/mol. At 35 °C, ethylbenzene and N2 permeability coefficients determined from pure‐gas permeation experiments are similar to those obtained from mixed‐gas permeation experiments, and ethylbenzene/N2 selectivity values as high as 800 were observed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1461–1473, 2000  相似文献   

5.
The kinetics of the hydrogen getter 1,4‐bis(phenylethynyl)benzene (DEB) blended with carbon‐supported Pd (DEB‐Pd/C) dispersed uniformly in silicone [DEB‐Pd/C‐poly(dimethyl siloxane)] were studied with a thermogravimetric method as a function of the hydrogen pressure and temperature. A diffusion‐controlled reaction model was developed to explain the experimental results. The diffusion coefficient, solubility coefficient, and permeability of hydrogen through silicone rubber were determined. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 425–431, 2001  相似文献   

6.
The state of sorbed water and the sorbing processes of water to various polymer thin films were studied with Fourier transform infrared (FTIR) spectroscopy. To prepare the polymer films, we used poly(ethylene glycol)s of different molecular weights and various kinds of vinyl polymers, such as poly(2‐methoxyethyl acrylate). The O? H stretching band of water sorbed in the films increased gradually on contact with water vapor at 50% relative humidity and leveled off. When O? H stretching bands of water sorbed to polymer films were compared, the peak positions and profiles of water sorbed to the polymeric materials with the same hydrogen‐bonding site were similar. A hybrid density‐functional method supported the assignment of the peaks. Furthermore, the diffusion coefficient (D) of water vapor in the polymer films was estimated by time‐resolved measurements of the sorbed water at the very initial stage (0–830 s). It was clearly shown that the D values of water vapor in the polymer materials with a strong hydrogen‐bonding site were smaller than those in hydrophobic polymers. The usefulness of the FTIR technique to investigate water sorption to polymer materials was definitely demonstrated. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2175–2182, 2001  相似文献   

7.
Equilibrium sorption and uptake kinetics of n‐butane and n‐pentane in uniform, biaxially oriented, semicrystalline polyethylene terephthalate films were examined at 35 °C and for pressures ranging from 0 to approximately 76 cmHg. Sorption isotherms were well described by the dual‐mode sorption model. Sorption kinetics were described either by Fickian diffusion or a two‐stage model incorporating Fickian diffusion at short times and protracted polymer structural relaxation at long times. Diffusion coefficients increased with increasing penetrant concentration. n‐Butane solubility was lower than that of n‐pentane, consistent with the more condensable nature of n‐pentane. However, n‐butane diffusion coefficients were higher than those of n‐pentane. Infinite‐dilution, estimated amorphous phase diffusion and solubility coefficients were well correlated with penetrant critical volume and critical temperature, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1160–1172, 2001  相似文献   

8.
The solubility and diffusion coefficient of carbon dioxide in intermediate‐moisture starch–water mixtures were determined both experimentally and theoretically at elevated pressures up to 16 MPa at 50 °C. A high‐pressure decay sorption system was assembled to measure the equilibrium CO2 mass uptake by the starch–water system. The experimentally measured solubilities accounted for the estimated swollen volume by Sanchez–Lacombe equation of state (S‐L EOS) were found to increase almost linearly with pressure, yielding 4.0 g CO2/g starch–water system at 16 MPa. Moreover, CO2 solubilities above 5 MPa displayed a solubility increase, which was not contributed by the water fraction in the starch–water mixture. The solubilities, however, showed no dependence on the degree of gelatinization (DG) of starch. The diffusion coefficient of CO2 was found to increase with concentration of dissolved CO2, which is pressure‐dependent, and decrease with increasing DG in the range of 50–100%. A free‐volume‐based diffusion model proposed by Areerat was employed to predict the CO2 diffusivity in terms of pressure, temperature, and the concentration of dissolved CO2. S‐L EOS was once more used to determine the specific free volume of the mixture system. The predicted diffusion coefficients showed to correlate well with the measured values for all starch–water mixtures. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 607–621, 2006  相似文献   

9.
Moisture sorption kinetics of nonoriented ethylene vinyl alcohol copolymer (EVOH) film (EF‐E15) were studied at 25, 35, and 45°C. Anomalous diffusion was observed for the polymeric film at high relative humidities (RH) and higher temperatures. Diffusion and solubility coefficients of water were found to be concentration dependent. The moisture sorption isotherms of three types of EVOH films (EF‐E15, EF‐F15, and EF‐XL15) determined at 25, 35, and 45°C, were well described using the GAB equation. Glass transition temperatures (Tg) of the EVOH films, as influenced by RH, were measured using differential scanning calorimetry. Tg values decreased with increasing RH due to the plasticization effect of water, and were found to be dependent on ethylene content and orientation of the EVOH films. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 691–699, 1999  相似文献   

10.
The water‐vapor permeability of poly(octadecyl acrylate) (PA‐18) was measured as a function of temperature in the region traversing its melting point (50 °C). The molten‐state permeability of PA‐18 is comparable to that of shorter side‐chain methacrylate polymers. Water permeability in the semicrystalline state of PA‐18 is similar to that of polyethylene at comparable crystallinity levels. The permeation switch, or change in permeability with the traversing of the melting point, for water is discussed in the context of previous results for other penetrants in this and other side‐chain crystalline polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 979–984, 2001  相似文献   

11.
The kinetics of water absorption in epoxide materials was studied by the aid of a diglycidyl ether of bisphenol‐A–triethylenetetramine (DGEBA–TETA) epoxy–resin system containing various amounts of the plasticizer THIOCOL (0–40 phr). The presence of plasticizer permits the formation of products with different crosslinking densities and hydrophilic characters. Dynamic water absorption experiments were carried out at 15, 40, and 70°C. For the fitting of the experimental results, a new model was used, based on a model proposed earlier by Jacobs and Jones. This model considers epoxide product as a two‐phase system consisting of a master phase (where the major part of the water is absorbed), which is homogeneous and nonpolar (phase 1), and of a second phase with different density and/or hydrophilic character (phase 2). By making the assumption that water diffusion can take place independently in the different phases of the material in accordance with Fick's second law, we can calculate the diffusion coefficient D and the water content at saturation M for each phase separately. Equilibrium water sorption measurements were performed at 40°C, and the data were analyzed and discussed based on the Guggenheim–Anderson–de Boer (GAB) equation, the results being in support of the two‐phase model used in the analysis of absorption kinetics. The linear expansion coefficient and the glass transition temperature of the materials, employed in the discussion of the results, were measured by thermomechanical analysis. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1165–1182, 1999  相似文献   

12.
Water sorption and transport properties for a series of homogeneous blends of hydrophobic polyethersulfone and hydrophilic polyethyloxazoline are reported. Only blends that remained homogeneous after exposure to liquid water were studied in detail. Equilibrium solubility of water in the blend films increases with increasing hydrophilic polymer content. For all materials, equilibrium sorption isotherms show dual-mode behavior at low water vapor activities and swelling behavior at high activities. The sorption/desorption kinetics for PES are generally Fickian, but two-stage behavior is evident in blends containing 10 and 20% polyethyloxazoline. Diffusion coefficients decrease with increasing polyethyloxazoline content, owing to a decrease in the fractional free volume. For all materials, the diffusion coefficient shows a positive dependence on water vapor activity or concentration due to plasticization of the material by high levels of sorbed water, but it becomes a greater function of activity as the composition of hydrophilic polymer in the blend is increased. Since the decrease in the diffusion coefficient is greater than the increase in the solubility coefficient, the permeability coefficient decreases with increasing hydrophilic polymer content. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 993–1007, 1997  相似文献   

13.
The gas‐transport properties of poly[2,6‐toluene‐2,2‐bis(3,4‐dicarboxylphenyl)hexafluoropropane diimide] (6FDA‐2,6‐DAT) have been investigated. The sorption behavior of dense 6FDA‐2,6‐DAT membranes is well described by the dual‐mode sorption model and has certain relationships with the critical temperatures of the penetrants. The solubility coefficient decreases with an increase in either the pressure or temperature. The temperature dependence of the diffusivity coefficient increases with an increase in the penetrant size, as the order of the activation energy for the diffusion jump is CH4 > N2 > O2 > CO2. Also, the average diffusion coefficient increases with increasing pressure for all the gases tested. As a combined contribution from sorption and diffusion, permeability decreases with increases in the pressure and the kinetic diameter of the penetrant molecules. Even up to 32.7 atm, no plasticization phenomenon can be observed on flat dense 6FDA‐2,6‐DAT membranes from their permeability–pressure curves. However, just as for other gases, the absolute value of the heat of sorption of CO2 decreases with increasing pressure at a low‐pressure range, but the trend changes when the feed pressure is greater than 10 atm. This implies that CO2‐induced plasticization may occur and reduce the positive enthalpy required to create a site into which a penetrant can be sorbed. Therefore, a better diagnosis of the inherent threshold pressure for the plasticization of a glassy polymer membrane may involve examining the absolute value of the heat of sorption as a function of pressure and identifying the turning point at which the gradient of the absolute value of the heat of sorption against pressure turns from a negative value to a positive one. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 354–364, 2004  相似文献   

14.
This article discusses the diffusion and solubility behavior of methanol/methyl tert‐butyl ether (MTBE) in glassy 6FDA–ODA polyimide prepared from hexafluoroisopropylidene 2,2‐bis(phthalic anhydride) (6FDA) and oxydianiline (ODA). The diffusion coefficients and sorption isotherm of methanol vapor in 6FDA–ODA polyimide at various pressures and film thicknesses were obtained with a McBain‐type vapor sorption apparatus. Methanol/MTBE mixed‐liquid sorption isotherms were obtained by head‐space chromatography and compared with a pure methanol sorption isotherm obtained with a quartz spring balance. Methanol sorption isotherms obtained with the two methods were almost identical. Both methanol sorption isotherms obeyed the dual‐mode model at a lower activity, which is typical for glassy polymer behavior. The MTBE was readily sorbed into the polymer in the presence of methanol, but the MTBE sorption isotherm exhibited a highly nonideal behavior. The MTBE sorption levels were a strong function of the methanol sorption level. Methanol diffusion in the polymer was analyzed in terms of the partial immobilization model with model parameters obtained from average diffusion coefficients and the dual‐mode sorption parameters. Simple average diffusion coefficients were obtained from sorption kinetics experiments, whereas the dual‐mode sorption parameters were obtained from equilibrium methanol sorption experiments. An analysis of the mobility and solubility data for methanol indicated that methanol tends to form clusters at higher sorption levels. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2254–2267, 2000  相似文献   

15.
Cylindrical samples (≈5 mm × 20 mm) of poly(2‐hydroxyethyl methacrylate) and copolymers of 2‐hydroxyethyl methacrylate and furfuryl methacrylate were prepared, and the sorption of water into these cylinders was studied by the mass‐uptake method and by the measurement of the volume change at equilibrium. The equilibrium water content and volume change for the cylinders both varied systematically with the copolymer composition. The diffusion of water into the cylinders followed Fickian behavior, with the diffusion coefficients, dependent on the copolymer composition, varying from 2.00 × 10−11 m2s−1 for poly(2‐hydroxyethyl methacrylate) to 5.00 × 10−12 m2s−1 for poly(2‐hydroxyethyl methacrylate‐co‐tetrahydrofurfuryl methacrylate) with a 1 : 4 composition. The polymers that were rich in 2‐hydroxyethyl methacrylate were characterized by a water‐sorption overshoot, which was attributed to a slow reorientation of the polymer chains in the swollen rubbery regions formed after water sorption. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1939–1946, 2000  相似文献   

16.
Aromatic polyamides based on poly(m‐xylylene adipamide) (MXD‐based polyamides) and poly(hexamethylene isophthalamide) (HMD‐based polyamides) were examined. Insight into the excellent gas‐barrier properties was obtained by the characterization of the effect of water sorption on the thermal transitions, density, refractive index, free‐volume hole size, and oxygen‐transport properties. Reversing the carbonyl position with respect to the amide nitrogen substantially lowered the oxygen permeability of MXD‐based polyamides in comparison with that of HMD‐based polyamides by facilitating hydrogen‐bond formation. The resulting restriction of conformational changes and segmental motions reduced diffusivity. The primary effect of water sorption was a decrease in the glass‐transition temperature (Tg) attributed to plasticization by bound water. No evidence was found to support the idea that sorbed water filled holes of free volume. When the polymer was in the glassy state, the drop in Tg accounted for hydration‐dependent changes in the density, refractive index, and free‐volume hole size. The correlation of the oxygen solubility with Tg and density confirmed the concept of oxygen sorption as filling holes of excess free volume. In some cases, water sorption produced a glass‐to‐rubber transition. The onset of rubbery behavior was associated with a minimum in the oxygen permeability. The glass‐to‐rubber transition also facilitated the crystallization of MXD‐based polymers, which complicated the interpretation of oxygen‐transport behavior at higher relative humidity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1365–1381, 2005  相似文献   

17.
In preparation for studying the hydrolytic degradation of Estane® 5703 and related poly(ester urethane) elastomers, the absorption (solubility) and diffusion of water in these polymers have been examined experimentally and modeled theoretically. Weight gain and loss experiments have been carried out. The amount of water absorbed per gram of sample was linear at low relative humidities (RHs) but curved upward at higher RHs. This curvature was not fit by Henry's law or the Flory–Huggins equation but was easily fit by a water‐cluster model. Diffusion coefficients were determined by fitting the time dependence of the sample weights, and the diffusion appeared Fickian to within experimental uncertainty. The similarity of related polymers was used to determine the approximate temperature dependence of the absorption. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 181–191, 2002  相似文献   

18.
The diffusion of pure liquid water into a commercial polypropylene (PP) film at 278–348 K was studied with Fourier transform infrared attenuated total reflectance spectroscopy. Abnormal diffusion behavior was indicated by a significant deviation between the experimental data and a Fickian diffusion model with the conventional saturated boundary condition applied at the water/PP interface. This deviation was observed at all the temperatures studied. With a modified boundary condition that took into account a mass‐transfer resistance at the water/PP interface, the Fickian model was able to represent the experimental data satisfactorily. The average water diffusion coefficient varied between 1.41 and 7.64 × 10?9 cm2/s, with an activation energy of diffusion of about 19.3 kJ/mol. The interfacial mass‐transfer resistance was represented by an exponential model with an empirical relaxation parameter. The relaxation parameter β increased as the temperature increased and reached an apparent plateau. The infrared spectrum indicated a positive chemical shift of 18 cm?1 for the less strongly hydrogen‐bonded component of the broad hydroxyl stretching band with respect to pure liquid water, indicating that hydrogen‐bonding interactions were weakened or broken when water molecules diffused into the PP matrix. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 980–991, 2002  相似文献   

19.
Oil palm fibers represent a very abundant and natural resource for raw materials that can be efficiently utilized as reinforcement in polymers. The sorption characteristics of two types of oil palm fibers—oil palm empty‐fruit‐bunch (OPEFB) fiber and oil palm mesocarp fiber‐in distilled water, mineral water, and water containing salt at four different temperatures were investigated. The uptake of water decreased with an increase in temperature. The OPEFB fiber showed higher sorption than the mesocarp fiber. This was due to the uptake associated with the capillary action in the OPEFB fiber. The thermodynamic parameters of the sorption process were calculated. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1215–1223, 2001  相似文献   

20.
Highly permeable glassy polymeric membranes based on poly (1‐trimethylsilyl‐1‐propyne) (PTMSP) and a polymer of intrinsic porosity (PIM‐1) were investigated for water sorption, water permeability and the separation of CO2 from N2 under humid mixed gas conditions. The water sorption isotherms for both materials followed behavior indicative of multilayer adsorption within the microvoids, with PIM‐1 registering a significant water uptake at very high water activities. Analysis of the sorption isotherms using a modified dual sorption model which accounts for such multilayer effects gave Langmuir affinity constants more consistent with lighter gases than the use of the standard dual mode approach. The water permeability through PTMSP and PIM‐1 was comparable over the water activities studied, and could be successfully model ed through a dual mode sorption model with a concentration dependent diffusivity. The water permeability through both membranes as a function of temperature was also measured, and found to be at a minimum at 80 ° C for PTMSP and 70 °C for PIM‐1. This temperature dependence is a function of reducing water solubility in both membranes with increasing temperature countered by increasing water diffusivity. The CO2 ‐ N2 mixed gas permeabilities through PTMSP and PIM‐1 were also measured and model ed through dual mode sorption theory. Introducing water vapour further reduced both the CO2 and N2 permeabilities. The plasticization potential of water in PTMSP was determined and indicated water swelled the membrane increasing CO2 and N2 diffusivity, while for PIM‐1 a negative potential implied that water filling of the microvoids hampered CO2 and N2 diffusion through the membrane. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 719–728  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号