首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A simple and high yielding method for the integration of 1,5-benzodiazepines integrated with 5-methyl- 2-oxo-3-phenyl-△^4-1,3,4-oxadiazolines in 75%-90% yield by microwave irradiation is devised. Microwave-accelerated reaction was compared with thermal method. All the compounds were characterized by physical, analytical and spectral (IR, 1^H NMR, MS) data. Title compounds were screened for preliminary pharmacological activities.  相似文献   

3.
A series of 3‐(3‐hydroxyphenyl)‐4‐alkyl‐3,4‐dihydrobenzo[e][1,3]oxazepine‐1,5‐dione compounds with general formula CnH2n+1CNO(CO)2C6H4(C6H4OH) in which n are even parity numbers from 2 to 18. The structure determinations on these compounds were performed by FT‐IR spectroscopy which indicated that the terminal alkyl chain attached to the oxazepine ring was fully extended. Conformational analysis in DMSO at ambient temperature was carried out for the first time via high resolution 1H NMR and 13C NMR spectroscopy.  相似文献   

4.
The TiCl4‐mediated [3+3] cyclocondensation of various 1,3‐bis(trimethylsilyloxy)buta‐1,3‐dienes with 1‐chloro‐1,1‐difluoro‐4‐(trimethylsilyloxy)pent‐3‐en‐2‐one provides a regioselective access to novel 6‐(chlorodifluoromethyl)salicylates (=6‐(chlorodifluoromethyl)‐2‐hydroxybenzoates) with very good regioselectivity. For selected products, it was demonstrated that the CF2Cl group can be transformed to CF2H and CF2(Allyl) by free‐radical reactions.  相似文献   

5.
Influence of dibenzoylmethane's substituents in meta and para positions on chemical shift values of tautomers' characteristic protons was investigated in four solvents with 1H NMR spectroscopy: acetone‐d6, benzene‐d6, CDCl3 and deuterated dimethyl sulfoxide (DMSO‐d6). It was proved that the influence of substituents on chemical shifts strongly depends on the kind of the solvent; the greatest changes were observed in benzene‐d6 and the smallest in CDCl3. In acetone‐d6 and DMSO‐d6, the influence of substituents on chemical shifts is similar and the most regular. It allowed a fair correlation of chemical shifts of para‐substituted dibenzoylmethane derivatives' characteristic protons with Hammett substituent constants in these solvents. In CDCl3, characteristic protons' chemical shifts were near 1H NMR spectroscopy measurement error limits, and, therefore, correlation with Hammett substituent constants in this solvent was unsatisfactory. In benzene, although the changes of chemical shifts are the most evident, the changes are also the most irregular, and, therefore, correlation in this solvent failed completely. Results of meta‐substituted derivatives were much more irregular, and their correlation with Hammett substituent constants was poor in all investigated solvents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The fragmental behavior of some monocyclic N‐aryl‐δ‐valerolactams in EI‐MS was studied. Their molecular ion peak, together with some characteristic fragments such as [M‐29]+, [M‐56]+?, [M‐69]+, and [M‐98]+, were always found in a series of N‐aryl‐δ‐valerolactams in EI‐MS spectra. Furthermore, the mechanism for the interpretation of each fragment is described.  相似文献   

7.
Treatment of 3‐aryl‐2‐thioxo‐1,3‐thiazolidin‐4‐ones 1 with CN? and NCO? effected the ring cleavage providing [(cyanocarbonothioyl)amino]benzenes 4 and arylisothiocyanates 5 , respectively. Similar treatment of 5‐(2‐aryl‐2‐oxoethyl) derivatives 2 afforded 2,4‐bis(2‐aryl‐2‐oxoethylidene)cyclobutane‐1,3‐diones 6 along with each of the preceding products. Treatment of the respective (E,Z)‐5‐(2‐aryl‐2‐oxoethylidene) analogues 3b and 3c with CN? gave 4b and 4c and 2‐(arylcarbonyl)‐2‐methoxy‐4‐oxopentanedinitriles 7b and 7c , in addition to 3,6‐bis[2‐(4‐chlorophenyl)‐1‐methoxy‐2‐oxoethylidene]‐1,4‐dithiane‐2,5‐dione 8c , which has been generated from 3c . Reactions of 3c or 3d with NCO? provided 5c or 5d , together with 8c or 8d as pure isomers. In the formation of the MeO products 7 and 8 , the solvent (MeOH) has participated. Structures of these products are based on microanalytical and spectroscopic data. Rationalizations for the above transformations are given.  相似文献   

8.
9.
The object of this study is the interaction of the cyclic anhydride 2 of (18α,19β)‐19‐hydroxy‐2,3‐secooleanane‐2,3,28‐trioic acid 28,19‐lactone ( 1 ) with primary and secondary amines. It was shown that the products of steric control (the corresponding 2‐amino‐2‐oxo‐3‐oic acids=2‐amides) were formed solely upon the opening of the anhydride cycle by secondary amines (Scheme 2), whereas the interaction with primary amines yielded a mixture of isomeric amides (Scheme 10). In the latter case, the solvent provided a noticeable effect on the reaction selectivity, which was demonstrated in the case of 4‐methoxybenzylamine. The interaction between the resulting 3‐amides and oxalyl chloride yielded the corresponding cyclic imides, whereas under these conditions, 2‐amides formed spiropyrrolidinetriones (Scheme 4).  相似文献   

10.
Asymmetric reduction of 2‐chloro‐3‐oxo esters was achieved by catalytic transfer hydrogenation using [RuCl2(p‐cymene)](S,S)‐TsDPEN as the chiral catalyst and HCOOH‐Et3N as the hydrogen source. Moderate to good yields (up to 85%) and good enantioselectivities (up to 98% ee) were obtained.  相似文献   

11.
Kinetics of the reaction of 2‐chloro‐3,5‐dinitrobenzotriflouride with aniline were studied in toluene, methanol‐toluene binary solvents, benzene and chloroform. The reaction in toluene exhibits third‐order kinetics consistent with aggregates of aniline. Thermodynamic parameters (H#, (S# and (G#are calculated and discussed for the reaction of 2‐chloro‐3,5‐dinitrobenzotriflouride with aniline in methanol‐toluene. Molecular complexes between aniline and the substrate are rejected spectrophotometricaly. The mechanism is studied and compared with the reaction in presence of pyridine. It shows an amine dependence and formation of homo and/or hetero mixed aggregates between aniline and pyridine i.e. dimer mechanism.  相似文献   

12.
The mass spectra of a series of N‐aryl α,β‐unsaturated γ‐lactams were studied. Besides the molecular ion, the three characteristic fragments such as [M+‐29], [M+‐55], and [M+‐82] were commonly found in a series of N‐Aryl α,β‐unsaturated γ‐lactams in EI/MS. Further more the mechanism for the interpretation of these fragments is also de scribed.  相似文献   

13.
本文报道了6种新的丙烯酰胺衍生物的EI谱。在精确质量测量和B/E,B~2/E联动扫描亚稳离子测定的基础上,着重讨论了该类化合物的共同质谱特征:如分子离子失去H_2O的成环反应;产物离子的开环反应;分子内的氢重排反应等。同时,利用Hammett方程讨论了化合物中N-苯基端苯环上不同取代基对特定碎片离子强度的影响  相似文献   

14.
N‐Methyl β‐amino acids are generally required for application in the synthesis of potentially bioactive modified peptides and other oligomers. Previous work highlighted the reductive cleavage of 1,3‐oxazolidin‐5‐ones to synthesise N‐methyl α‐amino acids. Starting from α‐amino acids, two approaches were used to prepare the corresponding N‐methyl β‐amino acids. First, α‐amino acids were converted to N‐methyl α‐amino acids by the so‐called ‘1,3‐oxazolidin‐5‐one strategy’, and these were then homologated by the Arndt–Eistert procedure to afford N‐protected N‐methyl β‐amino acids derived from the 20 common α‐amino acids. These compounds were prepared in yields of 23–57% (relative to N‐methyl α‐amino acid). In a second approach, twelve N‐protected α‐amino acids could be directly homologated by the Arndt–Eistert procedure, and the resulting β‐amino acids were converted to the 1,3‐oxazinan‐6‐ones in 30–45% yield. Finally, reductive cleavage afforded the desired N‐methyl β‐amino acids in 41–63% yield. One sterically congested β‐amino acid, 3‐methyl‐3‐aminobutanoic acid, did give a high yield (95%) of the 1,3‐oxazinan‐6‐one ( 65 ), and subsequent reductive cleavage gave the corresponding AIBN‐derived N‐methyl β‐amino acid 61 in 71% yield (Scheme 2). Thus, our protocols allow the ready preparation of all N‐methyl β‐amino acids derived from the 20 proteinogenic α‐amino acids.  相似文献   

15.
The substituent‐induced chemical shifts (SCS) of C2 and C3 on the 13C NMR spectra of 1‐aryl‐3,3‐difluoro‐2‐halocyclopropenes were studied. The correlation between SCS and Hammett constants shows that the tendency of effect by the substituents on the phenyl ring is BrC2(ρ = 4.66) > ClC2(ρ = 4.50) and ClC3(ρ = ?1.63) > BrC3(ρ = ?1.41). The DSP treatment further confirms the SCS of C2 and C3 are the main contribution of the resonance effect and field effect, respectively. Those results of the incremental shifts reveals that the gem‐difluorocyclopropenyl bearing the phenyl group possesses a triple bond character, which is also observed in IR spectra with high n?C=C (1768–1945 cm?1).  相似文献   

16.
Spectrophotometric and spectrofluorimetric methods were developed for the determination of oxamniquine (OXM). Both methods are based on coupling with 4‐chloro‐7‐nitrobenzo‐2‐oxa‐1,3‐diazole (NBD‐Cl) in borate buffer of pH 7.6, and the reaction product was measured at 400 nm (Method I). The same product was measured by spectrofluorimetry at 480 nm upon excitation at 400 nm (Method II). The absorbance and the fluorescence intensity were enhanced by addition of sodium dodecyl sulphate (SDS). The absorbance‐concentration plot is rectilinear over the range of 5–25 μg/mL with an LOD of 0.31 μg/mL. The fluorescence‐concentration plot is linear over the range of 0.2–1.2 μg/mL with an LOD of 0.03 μg/mL. Both methods were applied to the analysis of capsules, and the results were in good agreement with those obtained using the official method. The method was applied to spiked human plasma; the mean % recovery (n = 5) is 101.05 ± 1.65. A proposal of the reaction pathway is presented.  相似文献   

17.
[1,3‐Dihydro‐4‐phenyl(1,5)benzodiazepin‐2‐ylidene]malononitrile 1a was treated with formaline and some different primary amines to give the corresponding pyrimido(1,5)benzodiazepines 2a–d . Treatment of compound 1a with halo reagents yielded the corresponding pyrrolobenzodiazepines 3a,b . The reaction of compound 1a with active methylenes, bidentates, S,S‐ and N,S‐acetals afforded the corresponding spiro(1,5)‐benzodiazepines 4a‐c–8a,b , respectively.  相似文献   

18.
基于2-酰基1,3-环己二酮异构化反应,本文用密度泛函理论对文献报道的和我们设计的机理进行了系统研究。对反应中可能的速控步骤1,3-H和1,5-H迁移的过渡态结构和能垒进行了优化和计算。结果表明:本文设计的包括两个连续的1,5-酰基迁移和1,5-H迁移的反应机理,在动力学上更占优势。为了考察溶剂环境对反应的影响,本文分别研究了溶剂三乙胺和水对速度控制步骤1,3-H和1,5-H迁移的催化效应,揭示了两种催化剂对1,3-H和1,5-H迁移催化作用的差异。  相似文献   

19.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

20.
Reactions of copper(I) halides (Cl, Br, I) with 1‐methyl‐1, 3‐imidazoline‐2‐thione (mimzSH) in 1 : 2 molar ratio yielded sulfur‐bridged dinuclear [Cu2X2(μ‐S‐mimzSH)21‐S‐mimzSH)2] (X = I, 1 , Br, 2 ; Cl, 3 ) complexes. Copper(I) iodide with 1,3‐imidazoline‐2‐thione (imzSH2) and Ph3P in 1 : 1 : 1 molar ratio has also formed a sulfur‐bridged dinuclear [Cu2I2(μ‐S‐imzSH2)2(PPh3)2] ( 4 ) complex. The central Cu(μ‐S)2Cu cores form parallelograms with unequal Cu–S bond distances {2.324(2), 2.454(3) Å} ( 1 ); {2.3118(6), 2.5098(6) Å} ( 2 ); {2.3075(4), 2.5218(4) Å} ( 3 ); {2.3711(8), 2.4473(8) Å} ( 4 ). The Cu···Cu separations, 2.759–2.877Å in complexes 1 – 3 are much shorter than 3.3446Å in complex 4 . The weak intermolecular interactions {H2CH···S# ( 2 ); CH···Cl# ( 3 ); NH···I# ( 4 )} between dimeric units in complexes 2 – 4 lead to the formation of linear 1D polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号