首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We used neutron reflectivity to measure the interfacial width in the immiscible system polystyrene/poly(n‐butyl methacrylate) (PS/PnBMA). Measurements were made on the same samples at temperatures ranging from below the glass‐transition temperature (Tg) of PS to slightly above. We observed significant broadening of the interface at temperatures below the Tg of PS, indicating chain mobility below the bulk Tg value. The interfacial width exhibited a plateau at a value of 20 Å in the temperature range of 365 K < T < 377 K. A control experiment involving hydrogenated and deuterated PS films (hPS/dPS) showed no such broadening over the same temperature region. The results are consistent with a reduction of the Tg of PS in the interfacial region of ~20 K. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2664–2670, 2001  相似文献   

2.
The lifetimes of positrons have been measured for network polymers based on polyethers. From the temperature dependence of the lifetime of ortho-positronium (o-Ps), τ3, for the network polymer of poly(ethylene oxide-co-propylene oxide) [P(EO/PO)], an onset temperature for limited local motions of molecules, Tγ, and the glass transition temperature, Tg, were determined to be 57 and 201 K, respectively. For the network polymer of poly[EO-co-2-(2-methoxyethoxy)ethyl glycidyl ether] [P(EO/MEEGE)], Tγ and Tg were determined to be 57 and 185 K, respectively. For both specimens, above 270 K, the observed linear temperature dependence of τ3 was attributed to the thermal expansion of open spaces in a liquid state. In the temperature range between Tγ and 270 K, for the P(EO/MEEGE) network, τ3 was longer and its intensity was smaller than those for the P(EO/PO) network. These results were attributed to the increase in the size of open spaces for the P(EO/MEEGE) network polymer and the blocking of these regions by motions of side chains and chain ends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1919–1925, 1998  相似文献   

3.
This study describes a novel and facile synthesis strategy for a styrene‐butadiene rubber (SBR)‐like polymer via Friedel–Crafts‐type reaction between aromatic compounds and polybutadiene using an aluminum chloride as a catalyst. Although gelation was induced by a reaction of a generated carbocation with olefins in other polybutadiene chains in benzene and toluene because of their low electron densities on their rings, anisole with a higher electron density reacted with the polybutadiene carbocation efficiently. The introduction ratio of anisole increased as the reaction proceeded, and the obtained polymer, BRAN polymer, contained 15% anisoles for olefins in the polybutadiene in 4 h at 80 °C as estimated by 1H NMR analysis. The glass‐transition temperature (Tg) of the BRAN polymer also increased with anisole content (Tg ~?50 °C when anisole contents 20%). The vulcanizate containing the BRAN polymer showed higher mechanical properties compared to samples using other matrix polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 841–847  相似文献   

4.
Open spaces and relaxation processes in the subsurface region of isotactic polypropylene were investigated by monoenergetic positron beams. From measurements of the lifetime spectra of positrons, the size of the open spaces in the subsurface region (≤ 0.2 μm) was found to be larger than that in the bulk; their differences were estimated as 20% at 295 K and 10% at 395 K. From conventional positron annihilation experiments, the glass‐transition temperatures, Tg (upper)and Tg(lower) were determined as 306 K and 278 K, respectively. These transition temperatures were associated with the onset temperatures of the molecular motions under the constraint imposed by crystalline regions and those free from the constraint, respectively. In the subsurface region, although the onset temperatures of the molecular motions were close to those in the bulk, the molecular motions above Tg (lower) were found to be suppressed. The annihilation characteristics of positrons with different implantation energies were also discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 101–107, 2000  相似文献   

5.
The phase behavior of ternary poly‐(2‐vinylpyridine) (P2VPy)/poly‐(N‐vinyl‐2‐pyrrolidone) (PVP)/bis‐(4‐hydroxyphenyl)methane (BHPM) blends was studied. Fourier transform infrared spectroscopic examinations demonstrated that BHPM interacts with P2VPy and PVP through hydrogen‐bonding interactions. The addition of a sufficiently large amount of BHPM transformed an opaque blend with two glass‐transition temperatures (Tg's) to a transparent single‐Tg blend. Scanning electron microscopic studies showed that the transparent single‐Tg blend is micro‐phase‐separated at a scale of about 30 nm. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1815–1823, 2001  相似文献   

6.
A self‐polymerizable quinoxaline monomer (A‐B) has been synthesized and polymerized via aromatic nucleophilic substitution reactions. An isomeric mixture of self‐polymerizable quinoxaline monomers—2‐(4‐hydroxyphenyl)‐3‐phenyl‐6‐fluoroquinoxaline and 3‐(4‐hydroxyphenyl)‐2‐phenyl‐6‐fluoroquinoxaline—was polymerized in N‐methyl‐2‐pyrrolidinone (NMP) to afford high molecular weight polyphenylquinoxaline (PPQ) with intrinsic viscosities up to 1.91 dL/g and a glass‐transition temperature (Tg) of 251 °C. A series of comonomers was polymerized with A‐B to form PPQ/polysulfone (PS), PPQ/polyetherether ketone (PEEK), and PPQ/polyethersulfone (PES) copolymers. The copolymers readily obtained high intrinsic viscosities when fluorine was displaced in NMP under reflux. However, single‐electron transfer (SET) side reactions, which limit molecular weight, played a more dominant role when chlorine was displaced instead of fluorine. SET side reactions were minimized in the synthesis of PPQ/PS copolymers through mild polymerization conditions in NMP for longer polymerization times. Thus, the Tg's of PES (Tg = 220 °C), PEEK (Tg = 145 °C), and PS (Tg = 195 °C) were raised through the incorporation of quinoxaline units into the polymer. Copolymers with high intrinsic viscosities resulted in all cases, except in the case of PPQ/PEEK copolymers when 4,4′‐dichlorobenzophenone was the comonomer. © 2001 John Wiley & Sons, Inc. J Polym Sci A Part A: Polym Chem 39: 2037–2042, 2001  相似文献   

7.
A series of novel copolymers of trans‐4‐hydroxy‐L ‐proline (Hpr) and α‐ hydroxy acids [D,L ‐mandelic acid (DLMA) and D,L ‐lactic acid (DLLA)] were synthesized via direct melt copolymerization with stannous octoate as a catalyst. These new copolymers had pendant amine functional groups along the polymer backbone chain. The optimal reaction conditions for the synthesis of the copolymers were obtained with 4 wt % stannous octoate at 140 °C under vacuum for 16 h. The synthesized copolymers were characterized by IR spectrophotometry, proton nuclear magnetic resonance, differential scanning calorimetry, and Ubbelohde viscometry. The effects of the kinds of comonomers and the comonomer molar ratio on the polycondensation and glass‐transition temperature (Tg) were investigated. The Tg's of the copolymers shifted to lower temperatures with an increasing comonomer molar ratio. As expected, the Tg's of the NZ‐Hpr/DLMA copolymers were higher than the NZ‐Hpr/DLLA copolymers, the pendant groups on the monomers (NZ‐Hpr) became larger and more flexible, and the Tg's of the resulting polymers declined. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 724–731, 2001  相似文献   

8.
The thermal properties of physical blends containing benzoxazine monomer and polycaprolactone (PCL) were monitored by DSC and Fourier transform infrared spectroscopy (FTIR). The ring‐opening reaction and subsequent polymerization reaction of the benzoxazine were facilitated significantly by the presence of a PCL modifier. Hydrogen‐bond formation between the hydroxyl groups of polybenzoxazine and the carbonyl groups of PCL was evident from the FTIR spectra. Only one glass‐transition temperture (Tg) value was found in the composition range investigated, and the Tg value of the resulting blend appeared to be higher in the blend with a greater amount of PCL. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 736–749, 2001  相似文献   

9.
Alumina/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by an in situ free‐radical polymerization process with 38 and 17 nm diameter γ‐alumina nanoparticles. At extremely low filler weight fractions (<1.0 wt % of 38 nm fillers or < 0.5 wt % of 17 nm fillers) the glass‐transition temperature (Tg) of the nanocomposites drops by 25 °C when compared to the neat polymer. Further additions of filler (up to 10 wt %) do not lead to additional Tg reductions. The thermal behavior is shown to vary with particle size, but this dependence can be normalized with respect to a specific surface area. The nanocomposite Tg phenomenon is hypothesized to be because of nonadhering nanoparticles that serve as templates for a porous system with many internal interfaces that break up the percolating structure of dynamically heterogeneous domains recently suggested by Long, D.; and Lequeux, F. Eur Phys J E 2001, 4, 371 to be responsible for the Tg reductions in polymer ultrathin films. The results also point to a far field effect of the nanoparticle surface on the bulk matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4371–4383, 2004  相似文献   

10.
Second harmonic generation (SHG) was used to measure the temperature dependence of the reorientation activation volume (ΔV*) of a syndioregic main‐chain hydrazone (SMCH) nonlinear optical polymer. The decay of the SHG signal from poled films of SMCH was recorded at hydrostatic pressures up to 2924 atm and at temperatures between 25 °C below the glass‐transition temperature (Tg) to 20 °C above it. ΔV* for pressures less than 500–1000 atm and T > Tg decreased as the temperature was increased. For pressures greater than 1000 atm, ΔV* was essentially constant for all temperatures. In addition, the size of ΔV* indicated that the chromophore in this main chain was internally flexible. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 895–900, 2001  相似文献   

11.
Fuzzy set theory can be used to study the relationship between the glass‐transition temperature (Tg) and structure of polymers. We used the method to map this relationship and obtained Tg's for 241 polymers with a standard deviation of 20 K (the confidence bound was 90%). We also used the method to predict Tg's for 15 polymers with a standard deviation of 67 K (the confidence bound was 90%). This study demonstrates that fuzzy set theory can be effectively used for determining the quantitative structure–property relationship of polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 454–459, 2002; DOI 10.1002/polb.10105  相似文献   

12.
The continuous‐multilayer model introduced in our previous study for the Tg behavior of thin films is adapted to nanocomposite systems. Tg enhancement in both thin films and nanocomposites with attractive interfacial interactions can be explained by the same model. Various shapes of nanoparticles are proposed to rationalize the adaptation of the one‐dimensional model for the Tg behavior of thin film to three‐dimensional system such as nanocomposite. The tendency of predicted Tg enhancements in poly(methyl methacrylate) and P2VP nanocomposites with silica particles are qualitatively fit to experimental data in literatures. For the further quantitative fitting, the model is partially modified with the consideration for other factors affecting Tg deviation in nanocomposite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2281–2287, 2009  相似文献   

13.
The prediction of chemical structures that possess higher glass‐transition temperatures (Tg's) is crucial for designing polyimides. Because of a lack of suitable parameters, several estimation methods cannot be used for this purpose. In this study, therefore, we used molecular dynamic simulation with the DREIDING II force field to predict Tg's for polyimides. Simulated results indicated a good agreement with experimental observations. A barrier analysis of the bridging bonds between moieties along the main‐chain backbone showed a correlation between Tg and the barrier height. This proved to be helpful in a preliminary selection before the molecular dynamic simulation for accelerating the process of research and development on new polyimides. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2243–2251, 2001  相似文献   

14.
Fuzzy set theory was used to study the relationship between the glass‐transition temperature (Tg) and structure of homopolymers. The method can map the relationship and give the Tg for 235 polymers with a standard deviation of 8 K (the confidence bound was 90%). The entropy of the fuzziness was used to quantitatively describe the interactions among groups. The method was used to predict the Tg of 10 polymers not included in the 235 polymers, with a standard deviation of 9 K (the confidence bound was 90%). The study demonstrates again that fuzzy set theory can be effectively used to investigate the quantitative structure–property relationship of polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2164–2169, 2002  相似文献   

15.
The conductivity of styrene‐butadiene‐styrene block copolymers containing different amounts of extraconductive carbon black (CB) was investigated as a function of the mold temperature. The composites exhibited reduced percolation thresholds (between 1.0 and 2.0 vol % CB). The dynamic mechanical analysis characterization revealed that the glass‐rubber‐transition temperatures of both segments were not affected by the CB addition, although the damping of the polybutadiene phase displayed a progressive drop with an increase in the CB concentration. The normalized curves of tan δ/tan δmax (where tan δ represents the value of the loss tangent at any measurement temperature and tan δmax represents the loss tangent peak value at the corresponding temperature Tmax) versus T/Tmax (where T is the temperature and Tmax is the maximum temperature), corresponding to both polystyrene and polybutadiene phases as well as the activation energy related to the glass‐rubber‐transition process, did not present any significant change with the addition of CB. The dielectric analysis revealed the presence of two relaxation peaks in the composite containing 1.5 vol % CB, the magnitude of which was strongly influenced by the frequency, being attributed to interfacial Maxwell‐Wagner‐Sillars relaxations caused by the presence of different interfaces in the composite. The mechanical properties were not affected by the presence of CB at concentrations of up to 2.5 vol %. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2983–2997, 2003  相似文献   

16.
The glass transition temperature (Tg) of individual electrospun polymer polyvinyl alcohol fibers of varying diameter was measured using atomic force microscopy (AFM) based nanomechanical thermal analysis. Indentation and bending of individual electrospun fibers using AFM allowed the calculation of the elastic modulus of the polyvinyl alcohol (PVA) fibers across a range of different temperatures. The elastic modulus of electrospun PVA fibers was observed to decrease significantly when passing through Tg, which allowed accurate determination of Tg. The Tg of electrospun PVA fibers was shown to decrease for smaller fiber diameters especially for fiber diameters below 250 nm. This size‐dependent glass transition behavior of electrospun PVA fibers is indicated as being due to polymer chain confinement. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

17.
A new series of highly phenyl‐substituted polyfluorene derivatives were synthesized and characterized. The resulting polymers were amorphous and showed excellent solubility in common organic solvents, such as chloroform, tetrahydrofuran, xylene, toluene, chlorobenzene, and so forth. All possessed satisfied thermal stability with glass‐transition temperatures (Tg's) in the range of 79–115 °C. They emitted blue light with photoluminescent (PL) maximum peaks at about 408–412 nm in thin films. The PL efficiencies of the polymer films were measured around 30–33%. The highly phenylated pendants improved the Tg of polyfluorene without forming defects in the polymers and reduced their tendency to form aggregate/excimers. Polymer light‐emitting diodes were fabricated from these polymers with the configuration of indium tin oxide/polyethylenedioxythiophene:polystyrene sulfonic acid/polymer/Ba/Al, which emitted bright blue light with maximum peaks at 418–420 nm. The maximum external quantum efficiencies of these devices were 0.41–0.6%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2985–2993, 2004  相似文献   

18.
Two series of polyimides based on laterally attached p‐terphenyl and biphenyl groups were synthesized. The solubility and thermal properties were studied using DSC, thermogravimetric analysis, and the solubility test. These polymers exhibited good thermal stability and excellent solubility. The high solubility for both polymer series was attributed to the non‐coplanarity of diamine monomers and the use of fluorinated dianhydride, whereas the slightly better solubility for polymers based on p‐terphenyl was attributed to further weakening of interchain interaction of the polymers. Both polymer series exhibited glass‐transition temperatures (Tg's) in the range of 244–272 °C. The Tg's of polymers containing laterally attached p‐terphenyls were higher than those of their counterparts containing biphenyls by 5–17 °C. This was attributed to the formation of an interdigitated structure that hinders the segmental movement of polymer chains. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2998–3007, 2001  相似文献   

19.
We have investigated the effect of sample preparation on the glass‐transition temperature (Tg) of thin films of polystyrene (PS). By preparing and measuring the glass‐transition temperature Tg of multilayered polymer films, we are able to assess the contribution of the spincoating process to the reduced Tg values often reported for thin PS films. We find that it is possible to determine a Tg even on the first heating cycle, and that by the third heating cycle (a total annealing time of 15 min at T = 393 K) the Tg value has reached a steady state. By comparing multilayered versus single layered films we find that the whole Tg depends only on the total film thickness, and not on the thickness of the individual layers. These results strongly suggest that the spincasting process does not contribute significantly to Tg reductions in thin polymer films. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4503–4507, 2004  相似文献   

20.
A new cardo diacid chloride, 1,1‐bis‐[4‐(4‐chlorocarboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane ( 4 ), was synthesized from 1,1‐bis‐[4‐(4‐carboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane in refluxing thionyl chloride. Subsequently, various new polyesters were prepared from 4 with various bisphenols by solution polycondensation in nitrobenzene using pyridine as a hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.50 dL · g?1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. These polymers showed glass‐transition temperatures (Tg's) between 144 and 197 °C. The polymer containing the adamantane group exhibited the highest Tg value. The 10% weight loss temperatures of the polyesters, measured by thermogravimetric analysis, were found to be in the range of 426–451 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2951–2956, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号