首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
《Electroanalysis》2004,16(6):472-477
Five bisbridged calix[6]crowns have been investigated as Cs+ ionophore in PVC membrane electrodes. As ionophores, three 1,3‐bisbridged calix[6]crown‐4‐ethers( I–III ), 1,3‐bisbridged calix[6]crown‐5‐ether( IV ), and 1,3‐bisbridged calix[6]crown‐6‐ether( V ) have been evaluated. The membranes all give good Nernstian response in the concentration range from 1×10?7 to 1×10?1 M of cesium ion. The best detection limits (?log aequation/tex2gif-inf-1.gif=7.08–7.36) are obtained for electrode membranes containing 1,3‐bisbridged cofacial‐calix[6]crown‐4‐ethers( I‐III ), and the values are the lowest compared with those reported previously. The highest selectivity coefficients [ 3.74(Cs/K), 2.63(Cs/Rb)] are obtained for the membrane of 1,3‐bisbridged calix[6]crown‐4‐ether( II ), and these values are also the highest compared with previous reports for Cs+‐ISEs. The highest selectivity towards cesium ion is attributed to the geometrically cofacial positions of two crown‐ethers in calix[6]crowns in order to provide the complex of cesium ion and eight oxygens of cofacial crowns.  相似文献   

2.
Mono‐ and dianions of 2‐tert‐butyl‐3a2‐azapentabenzo[bc,ef,hi,kl,no]corannulene ( 1 a ) were synthesized by chemical reduction with sodium and cesium metals, and crystallized as the corresponding salts in the presence of 18‐crown‐6 ether. X‐ray diffraction analysis of the sodium salt, [{Na+(18‐crown‐6)(THF)2}3{Na+(18‐crown‐6)(THF)}( 1 a 2?)2], revealed the presence of a naked dianion. In contrast, controlled reaction of 1 a with Cs allowed the isolation of singly and doubly reduced forms of 1 a , both forming π‐complexes with cesium ions in the solid state. In [{Cs+(18‐crown‐6)}( 1 a ?)]?THF, asymmetric binding of the Cs+ ion to the concave surface of 1 a ? is observed, whereas in [{Cs+(18‐crown‐6)}2( 1 a 2?)], two Cs+ ions bind to both the concave and convex surfaces of the dianion. The present study provides the first successful isolation and characterization of the reduced products of heteroatom‐containing buckybowl molecules.  相似文献   

3.
With Cs9Pt4H a new representative of ionic compounds featuring metal anions can be added to this rare‐membered family. Cs9Pt4H exhibits a complex crystal structure containing Cs+ cations, Pt2? and H? anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the “alloy” cesium–platinum, or better cesium platinide, Cs2Pt, and the salt cesium hydride CsH according to Cs9Pt4H≡4 Cs2Pt?CsH.  相似文献   

4.
Cation adsorption and exchange has been an important topic in both basic and applied chemistry relevant to materials synthesis and chemical conversion, as well as purification and separation. Selective Cs+ uptake from aqueous solutions is especially important because Cs+ is expensive and is contained in radioactive wastes. However, the reported adsorbents incorporate Rb+ as well as Cs+, and an adsorbent with high selectivity toward Cs+ has not yet been reported. Highly selective uptake of Cs+ by an ionic crystal (etpyH)2[Cr3O(OOCH)6(etpy)3]2[α‐SiMo12O40]?3 H2O (etpy =4‐ethylpyridine) is described. The compound incorporated up to 3.8 mol(Cs+) mol(s)?1 (where s=solid) by cation‐exchange with etpyH+ and reduction of silicododecamolybdate with ascorbic acid. The amount of Cs+ uptake was comparable to that of Prussian blue, which is widely recognized as a good Cs+ adsorbent. Moreover, other alkali‐metal and alkaline‐earth‐metal cations were almost completely excluded (<0.2 mol mol(s)?1).  相似文献   

5.
Collision‐induced dissociation (CID) of the Cs+ heterodimer adducts of the nitrate anion (NO3?) and a variety of substituted benzoates (XBenz?) [(XBenz?)(Cs+)(NO3?)]? produces essentially nitrate and benzoate ions. A plot of the natural logarithm of their intensity ratio, ln[I (NO3?)/I(XBenz?)], versus the calculated cesium cation affinity (DFT B3LYP) of the substituted benzoate ions (equivalent to the enthalpy of heterolytic dissociation of the salt) is reasonably linear. This suggests that the kinetic method can be used as a source of data on the intrinsic interaction between the anionic and the cationic moieties in a salt. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Transparent platelet‐shaped green single crystals of the title compound were obtained by the reaction of cesium bromide, praseodymium, sulfur, and red phosphorus in the molar ratio 1:2:8:2 with an excess of CsBr as flux in evacuated silica ampoules at 950 °C for fourteen days. Cs3Pr5[PS4]6 crystallizes monoclinically in the space group C2/c (a = 1627.78(7), b = 1315.09(6), c = 2110.45(9) pm, β = 103.276(5)°; Z = 4). Its crystal structure is different from all the other alkali‐metal containing ortho‐thiophosphates of the lanthanides, since it is not possible to formulate a layer containing the praseodymium centered sulfur polyhedra ([PrS8]13—, d(Pr—S) = 286 — 307 pm) and the isolated [PS4]3— tetrahedra (d(P—S) = 202 — 207 pm, ?(S—P—S) = 104 — 106°). All these tetrahedra are edge‐sharing with the metal polyhedra to build up a framework instead. The coordination sphere of the half occupied (Cs2)+ cations (CN = 10 + 2) can be described as two six‐membered sulfur rings in chair conformation containing a “cesium‐pair” in the middle. In contrast the (Cs1)+ cations are surrounded in the not unusual configuration of tetracapped trigonal prisms (CN = 10, better 10 + 2 as well).  相似文献   

7.
Introduction  Ionchromatography (IC)hasbeenrecognizedasausefulmethodfortheseparationofinorganicanionsandcationssinceitsintroductionbySmalletal .in 1975 .1AsignificanttrendinthedevelopmentofICmethodissearchforsensitiveanduniversaldetectionmethods .Themaindet…  相似文献   

8.
A ditopic ion‐pair receptor ( 1 ), which has tunable cation‐ and anion‐binding sites, has been synthesized and characterized. Spectroscopic analyses provide support for the conclusion that receptor 1 binds fluoride and chloride anions strongly and forms stable 1:1 complexes ([ 1? F]? and [ 1? Cl]?) with appropriately chosen salts of these anions in acetonitrile. When the anion complexes of 1 were treated with alkali metal ions (Li+, Na+, K+, Cs+, as their perchlorate salts), ion‐dependent interactions were observed that were found to depend on both the choice of added cation and the initially complexed anion. In the case of [ 1? F]?, no appreciable interaction with the K+ ion was seen. On the other hand, when this complex was treated with Li+ or Na+ ions, decomplexation of the bound fluoride anion was observed. In contrast to what was seen with Li+, Na+, K+, treating [ 1?F ]? with Cs+ ions gave rise to a stable, host‐separated ion‐pair complex, [F ?1? Cs], which contains the Cs+ ion bound in the cup‐like portion of the calix[4]pyrrole. Different complexation behavior was seen in the case of the chloride complex, [ 1? Cl]?. Here, no appreciable interaction was observed with Na+ or K+. In contrast, treating with Li+ produces a tight ion‐pair complex, [ 1? Li ? Cl], in which the cation is bound to the crown moiety. In analogy to what was seen for [ 1? F]?, treatment of [ 1? Cl]? with Cs+ ions gives rise to a host‐separated ion‐pair complex, [Cl ?1? Cs], in which the cation is bound to the cup of the calix[4]pyrrole. As inferred from liposomal model membrane transport studies, system 1 can act as an effective carrier for several chloride anion salts of Group 1 cations, operating through both symport (chloride+cation co‐transport) and antiport (nitrate‐for‐chloride exchange) mechanisms. This transport behavior stands in contrast to what is seen for simple octamethylcalix[4]pyrrole, which acts as an effective carrier for cesium chloride but does not operates through a nitrate‐for‐chloride anion exchange mechanism.  相似文献   

9.
Polysulfonylamines. CLXIII. Crystal Structures of Metal Di(methanesulfonyl)amides. 12. The Orthorhombic Double Salt Na2Cs2[(CH3SO2)2N]4·3H2O: A Three‐Dimensional Coordination Polymer Built up from Cesium‐Anion‐Water Layers and Intercalated Sodium Ions The packing arrangement of the three‐dimensional coordination polymer Na2Cs2[(MeSO2)2N]4·3H2O (orthorhombic, space group Pna21, Z′ = 1) is in some respects similar to that of the previously reported sodium‐potassium double salt Na2K2[(MeSO2)2N]4·4H2O (tetragonal, P43212, Z′ = 1/2). In the present structure, four multidentately coordinating independent anions, three independent aquo ligands and two types of cesium cation form monolayer substructures that are associated in pairs to form double layers via a Cs(1)—H2O—Cs(2) motif, thus conferring upon each Cs+ an irregular O8N2 environment drawn from two N, O‐chelating anions, two O, O‐chelating anions and two water molecules. Half of the sodium ions occupy pseudo‐inversion centres situated between the double layers and have an octahedral O6 coordination built up from four anions and two water molecules, whereas the remaining Na+ are intercalated within the double layers in a square‐pyramidal and pseudo‐C2 symmetric O5 environment provided by four anions and the water molecule of the Cs—H2O—Cs motif. The net effect is that each of the four independent anions forms bonds to two Cs+ and two Na+, two independent water molecules are involved in Cs—H2O—Na motifs, and the third water molecule acts as a μ3‐bridging ligand for two Cs+ and one Na+. The crystal cohesion is reinforced by a three‐dimensional network of conventional O—H···O=S and weak C—H···O=S/N hydrogen bonds.  相似文献   

10.
After successful syntheses and structural refinements of the already known permanganates of cesium (Cs[MnO4]) and silver (Ag[MnO4]) we started to blend aqueous solutions of both components in various molar ratios. From crystallization experiments of these mixtures only three species of crystals with different chemical compositions were obtained: tricesium monosilver tetrakispermanganate (Cs3Ag[MnO4]4) and, depending upon the respective ratio, either additional silver permanganate or surplus cesium permanganate, namely. The new title compound crystallizes in the orthorhombic space group Pnnm (no. 58) with two formula units per unit cell and cell dimensions of a = 764.53(4), b = 1883.57(9) and c = 584.34(3) pm. The crystal structure of Cs3Ag[MnO4]4 consists of two crystallographically distinguishable cesium cations. (Cs1)+ is surrounded by fourteen oxygen atoms constructing a slightly distorted bicapped hexagonal prism. These polyhedra are connected through edge‐sharing with two other polyhedra of this kind to form chains along [001]. The chains are linked to each other via sixfold coordinated Ag+ cations (d(Ag–O) = 238–246 pm), arranged in such a manner that they link three oxygen atoms of two cesium polyhedra, leading to a two‐dimensional layer spreading out parallel to the (001) plane. Together with the two crystallographically different tetrahedral oxomanganate(VII) anions [MnO4] (d(Mn–O) = 161–162 pm) the other kind of cesium cations ((Cs2)+ with CN = 13) finally connect these layers three‐dimensionally.  相似文献   

11.
The crystal structure of cesium phenylacetylide, CsC2C6H5, was solved and refined from synchrotron powder diffraction data (Pbca, Z = 8). Each Cs+ cation is coordinated by five ligands: four acetylide groups coordinate side‐on and one end‐on. A similar arrangement is found in the crystal structure of NaC2H (P4/nmm, Z = 2). There is a group‐subgroup relationship between both structures. Most importantly, the crystal structure of CsC2C6H5 could only be solved with the help of synchrotron data, as the very good peak:noise ratio allowed the assignment of several very weak reflections, which finally led to the correct space group, in which a structural solution was possible using direct space methods.  相似文献   

12.
A new PVC membrane coated graphite electrode for cesium ion based on 4′,4″(5′)di–tert-butyl di-benzo-18-crown-6 (DTBDB18C6) as ionophore was prepared. The electrode shows a near Nernstian response of 57.0 ± 1.8 mV decade?1 over a wide activity range of 6.0 × 10?6–1.0 × 10?1 mol L?1 with a limit of detection 4.0 × 10?6 mol L?1. The proposed electrode is suitable for use in aqueous solution in the pH range of 3.0–9.5. It has a fast response time of 10 s and can be used for at least 1 month without any considerable divergence in potential. The selectivity coefficients for Cs+ ion with respect to ammonium, alkali, alkaline earth and some selected transition metal ions were determined and showed a superior selectivity over Li+, Na+ and alkaline earth metal ions. The new electrode was applied for determination of Cs+ in spiked tap water. The electrode was also used as indicator electrode in potentiometric titration of Cs+ with sodium tetraphenyl borate.  相似文献   

13.
Organic‐inorganic hybrid two‐dimensional (2D) perovskites (n≤5) have recently attracted significant attention because of their promising stability and optoelectronic properties. Normally, 2D perovskites contain a monocation [e.g., methylammonium (MA+) or formamidinium (FA+)]. Reported here for the first time is the fabrication of 2D perovskites (n=5) with mixed cations of MA+, FA+, and cesium (Cs+). The use of these triple cations leads to the formation of a smooth, compact surface morphology with larger grain size and fewer grain boundaries compared to the conventional MA‐based counterpart. The resulting perovskite also exhibits longer carrier lifetime and higher conductivity in triple cation 2D perovskite solar cells (PSCs). The power conversion efficiency (PCE) of 2D PSCs with triple cations was enhanced by more than 80 % (from 7.80 to 14.23 %) compared to PSCs fabricated with a monocation. The PCE is also higher than that of PSCs based on binary cation (MA+‐FA+ or MA+‐Cs+) 2D structures.  相似文献   

14.
The title compound, C21H22P+·BCl4?, is the first structurally characterized example of the [HP(o‐tolyl)3]+ cation, presented here with BCl4? as the counter‐ion. The cation has a near‐tetrahedral P atom and the BCl4? anion is near‐tetrahedral at boron. There are no unusually short cation–anion contacts.  相似文献   

15.
Cs2Ba(O3)4 · 2 NH3, the First Ionic Alkaline Earth Metal Ozonide Cs2Ba(O3)4 · 2 NH3 is the first ionic ozonide containing an alkaline earth metal cation. Its synthesis has been achieved via partial cation exchange of CsO3 dissolved in liquid ammonia. According to a single crystal X‐ray structure determination (Pnnm; a = 6.312(2) Å, b = 12.975(3) Å, c = 8.045(2) Å; Z = 2; R1 = 4.6%; 848 independent reflections) ozonide anions, cesium cations and ammonia molecules form a CsCl‐type arrangement, where Cs+ and NH3 occupy one half of the cation sites, each. Ba2+ is coordinated by four ozonide groups and two ammonia molecules. Because of a short hydrogen bond to one of the terminal oxygen atoms, the respective O–O‐distance in the ozonide ion is longer than the other. The shortest intermolecular O–O‐distance ever observed in ionic ozonides has been found in this compound, which can be taken as a first clue for the radical ozonide anion to dimerize like the isoelectronic SO2 does.  相似文献   

16.
Cesium‐lead halide perovskites (e.g. CsPbBr3) have gained attention because of their rich physical properties, but their bulk ferroelectricity remains unexplored. Herein, by alloying flexible organic cations into the cubic CsPbBr3, we design the first cesium‐based two‐dimensional (2D) perovskite ferroelectric material with both inorganic alkali metal and organic cations, (C4H9NH3)2CsPb2Br7 ( 1 ). Strikingly, 1 shows a high Curie temperature (Tc=412 K) above that of BaTiO3 (ca. 393 K) and notable spontaneous polarization (ca. 4.2 μC cm?2), triggered by not only the ordering of organic cations but also atomic displacement of inorganic Cs+ ions. To our knowledge, such a 2D bilayered Cs+‐based metal–halide perovskite ferroelectric material with inorganic and organic cations is unprecedented. 1 also shows photoelectric semiconducting behavior with large “on/off” ratios of photoconductivity (>103).  相似文献   

17.
Cesium Chromium Halides Cs3CrCl6, Cs3Cr2Cl9, and Cs3CrBr6 – Preparation, Properties, Crystal Structure The crystal structures of Cs3CrCl6 and Cs3Cr2Cl9 were determined and redetermined by X‐ray single‐crystal studies (space group Pnnm, Z = 6, a = 1115.6(2) pm, b = 2291.3(5) pm, c = 743.8(1) pm, Rf = 7.73%, 1025 unique reflections with I > 2σ(I) (Cs3CrCl6); P63/mmc, Z = 2, a = 721.7(2) pm und c = 1791.0(1) pm; Rf = 2.06%, 395 unique reflections with I > 2.5σ(I) (Cs3Cr2Cl9). The structure of Cs3CrCl6 consists of two different isolated CrCl6 octahedra and five crystallographic different Cs+ ions. The CrCl6 octahedra form ropes in the direction [001]. Because of orientational disordering of the Cr(1)Cl6 octahedra and the an only half‐occupation of some cesium and chlorine sites Cs3CrCl6 is strongly disordered in direction of the (020) plane. The ionic conductivity of Cs3CrCl6, which was expected owing to the great disorder, however, is with 7.3 × 10–5 Ω–1 cm–1 at 740 K relatively small. The compound Cs3CrBr6, which was firstly prepared by quenching stoichiometric amounts of CsBr and CrBr3 from 833 K, is metastable at ambient temperature. It is probably isostructural to Cs3CrCl6 as shown by X‐ray powder photographs.  相似文献   

18.
A bis‐tert‐alcohol‐functionalized crown‐6‐calix[4]arene (BACCA) was designed and prepared as a multifunctional organic promoter for nucleophilic fluorinations with CsF. By formation of a CsF/BACCA complex, BACCA could release a significantly active and selective fluoride source for SN2 fluorination reactions. The origin of the promoting effects of BACCA was studied by quantum chemical methods. The role of BACCA was revealed to be separation of the metal fluoride to a large distance (>8 Å), thereby producing an essentially “free” F?. The synergistic actions of the crown‐6‐calix[4]arene subunit (whose O atoms coordinate the counter‐cation Cs+) and the terminal tert‐alcohol OH groups (forming controlled hydrogen bonds with F?) of BACCA led to tremendous efficiency in SN2 fluorination of base‐sensitive substrates.  相似文献   

19.
This work documents the behaviour of the positive secondary ion yield of bulk polytetrafluoroethylene (PTFE) under dual‐beam depth profiling conditions employing 1 keV Ar+, Cs+ and SF5+. A unique chemical interaction is observed in the form of a dramatic enhancement of the positive secondary ion yield when PTFE is dual‐beam profiled with 1 keV Cs+. The distinct absence of such an enhancement is noted for comparison on two non‐fluorinated polymers, polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS). The bulk PTFE was probed using 15‐keV, 69Ga+ primary ions in dual beam mode under static conditions; 1‐keV Ar+ (a non‐reactive, light, noble element), Cs+ (a heavier metallic ion known to form clusters) and SF5+ (a polyatomic species) served as the sputter ion species. The total accumulated primary ion dose was of the order of 1015 ions/cm2, which is well beyond the static limit. The enhancement of the positive secondary yield obtained when profiling with 1‐keV Cs+ far exceeds that obtained when SF5+ is employed. An explanation of this apparent reactive ion effect in PTFE is offered in terms of polarisation of C? F bonds by Cs+ in the vicinity of the implantation site thereby predisposing them to facile scission. The formation of peculiar, periodic CsxFy+ (where y = x ? 1) and CsxCyFz+ clusters that can extend to masses approaching 2000 amu are also observed. Such species may serve as useful fingerprints for fluorocarbons that can be initiated via pre‐dosing a sample with low‐energy Cs+ prior to static 15‐keV Ga+ analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The title compound, tricaesium sodium iron(III) μ3‐oxido‐hexa‐μ2‐sulfato‐tris[aquairon(III)] pentahydrate, Cs2.91Na1.34Fe3+0.25[Fe3O(SO4)6(H2O)3]·5H2O, belongs to the family of Maus's salts, K5[Fe3O(SO4)6(H2O)3]·6H2O, which is based on the triaqua‐μ3‐oxido‐hexa‐μ‐sulfato‐triferrate(III) anion, [Fe3O(SO4)6(H2O)3]5−, with Fe in a characteristically distorted octahedral coordination environment, sharing a common corner via an oxide O atom. Cs in four different cation sites, Na in three different cation sites and five water molecules link the anions in three dimensions and set up a crystal structure in which those parts parallel to (001) and within 0.05 < z < 0.95 have a distinct trigonal pseudosymmetry, whereas the cation arrangement and bonding near z∼ 0 generate a clear‐cut noncentrosymmetric polar edifice with the monoclinic space group C2. The structure shows some cation disorder in the region near z ∼ , where one Na atom in octahedral coordination is partly substituted by Fe3+, and a Cs atom is substituted by small amounts of Na on a separate nearby site. One Na atom, located on a twofold axis at z = 0 and tetrahedrally coordinated by four sulfate O atoms of two [Fe3O(SO4)6(H2O)3]5− units, plays a key role in generating the noncentrosymmetric structure. Three of the seven different cation sites are on twofold axes (one Na+ site and two Cs+ sites), and all other atoms of the structure are in general positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号