首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of (5, X = H, Cl, Br) with methyl lithium in ether in the presence alkenes leads to cyclopropanes, e g.(6), apparently derived by trapping of an intermediate carbene (4); in the case of (5, X = Br), the precursor of the carbene, a cyclopropene (1, X=Y=Cl, Z=Me), may be trapped by addition of bromine at ?90°C.  相似文献   

2.
E. Taskinen  E. Sainio 《Tetrahedron》1976,32(5):593-595
Thermodynamics of geometrical and prototropic isomerization reactions on some halogen-containing vinyl ethers of the types ROCH–CHX (X = Cl, Br), ROC(CH2X)CH2 (X = F, Cl, Br), and ROC(CHMeCl)CH2 (R = Me, Et, Et2CH) have been studied. In ROCHαCHβX the cis (or Z) isomer is thermodynamically the more stable isomer, the higher stability of the Z isomer being due to its lower enthalpy. The relative stability of the E and Z forms is, however, reversed if the α H atom is replaced by a Me group. In systems like OCCX the double-bond stabilizing ability of the halogen atom decreases in the order Cl > Br > F, in contrast to the case in haloalkenes, where the corresponding order is F > Cl > Br.  相似文献   

3.
Interactions of carbenes and carbene analogs EH2 and EHX with HX and H2 (E = C, Si, Ge, Sn; X = F, Cl, Br), respectively, were studied by quantum chemical methods. Theoretical analysis of the carbene and silylene systems was carried out at the G3 level of theory using the MP2(full)/6?C31G(d) calculated geometries and vibrational frequencies. The stannylene systems were examined at the MP2 level using a modified LANL2DZ basis set for the Sn atoms and the 6?C31+G(d,p) basis sets for other atoms. Transformations in the germylene systems were studied within the framework of both approaches, which gave similar results. This allowed one to compare the reaction pathways and their energy profiles for the whole series of systems. In addition to the insertions into the H-X and H-H bonds, the exchange reactions resulting in interconversions of EH2 and EHX can proceed in the systems under consideration. The effects of the nature of the E and X atoms on the reaction barriers and exothermicity of both the insertion and exchange reactions are analyzed. Possible role of radical processes in these systems is assessed.  相似文献   

4.
The reaction of (C5Me5)2Th(CH3)2 with the phosphonium salts [CH3PPh3]X (X=Cl, Br, I) was investigated. When X=Br and I, two equivalents of methane are liberated to afford (C5Me5)2Th[CHPPh3]X, rare terminal phosphorano‐stabilized carbenes with thorium. These complexes feature the shortest thorium–carbon bonds (≈2.30 Å) reported to date, and electronic structure calculations show some degree of multiple bonding. However, when X=Cl, only one equivalent of methane is lost with concomitant formation of benzene from an unstable phosphorus(V) intermediate, yielding (C5Me5)2Th[κ2‐(C,C′)‐(CH2)(CH2)PPh2]Cl. Density functional theory (DFT) investigations of the reaction energy profiles for [CH3PPh3]X, X=Cl and I showed that in the case of iodide, thermodynamics prevents the production of benzene and favors formation of the carbene.  相似文献   

5.
The reaction of (C5Me5)2Th(CH3)2 with the phosphonium salts [CH3PPh3]X (X=Cl, Br, I) was investigated. When X=Br and I, two equivalents of methane are liberated to afford (C5Me5)2Th[CHPPh3]X, rare terminal phosphorano‐stabilized carbenes with thorium. These complexes feature the shortest thorium–carbon bonds (≈2.30 Å) reported to date, and electronic structure calculations show some degree of multiple bonding. However, when X=Cl, only one equivalent of methane is lost with concomitant formation of benzene from an unstable phosphorus(V) intermediate, yielding (C5Me5)2Th[κ2‐(C,C′)‐(CH2)(CH2)PPh2]Cl. Density functional theory (DFT) investigations of the reaction energy profiles for [CH3PPh3]X, X=Cl and I showed that in the case of iodide, thermodynamics prevents the production of benzene and favors formation of the carbene.  相似文献   

6.
The density functional theory calculations were used to study the influence of the substituent at P on the oxidative addition of PhBr to Pd(PX3)2 and Pd(X2PCH2CH2PX2) where X = Me, H, Cl. It was shown that the Cipso-Br activation energy by Pd(PX3)2 correlates well with the rigidity of the X3P-Pd-PX3 angle and increases via the trend X = Cl < H < Me. The more rigid the X3P-Pd-PX3 angle is, the higher the oxidative addition barrier is. The exothermicity of this reaction also increases via the same sequence X = Cl < H < Me. The trend in the exothermicity is a result of the Pd(II)-PX3 bond strength increasing faster than the Pd(0)-PX3 bond strength upon going from X = Cl to Me. Contrary to the trend in the barrier to the oxidative addition of PhBr to Pd(PX3)2, the Cipso-Br activation energy by Pd(X2PCH2CH2PX2) decreases in the following order X = Cl > H > Me. This trend correlates well with the filled dπ orbital energy of the metal center. For a given X, the oxidative addition reaction energy was found to be more exothermic for the case of X2PCH2CH2PX2 than for the case of PX3. This effect is especially more important for the strong electron donating phosphine ligands (X = Me) than for the weak electron donating phosphine ligands (X = Cl).  相似文献   

7.
The carbene triel bond is predicted and characterized by theoretical calculations. The C lone pair of N-heterocyclic carbenes (NHCs) is allowed to interact with the central triel atom of TrR3 (Tr = B and Al; R = H, F, Cl, and Br). The ensuing bond is very strong, with an interaction energy of nearly 90 kcal/mol. Replacement of the C lone pair by that of either N or Si weakens the binding. The bond is strengthened by electron-withdrawing substituents on the triel atom, and the reverse occurs with substitution on the NHC. However, these effects do not strictly follow the typical pattern of F > Cl > Br. The TrR3 molecule suffers a good deal of geometric deformation, requiring on the order of 30 kcal/mol, in forming the complex. The R(C···Tr) bond is quite short, for example, 1.6 Å for Tr = B, and shows other indications of at least a partially covalent bond, such as a high electron density at the bond critical point and a good deal of intermolecular charge transfer.  相似文献   

8.
He(I) photoelectron spectroscopy was used to examine the valence‐shell electronic structure of three new and seven previously known bicyclo[1.1.1]pentane derivatives, 1,3‐Y2‐C5X6 (for X=H, Y=H, Cl, Br, I, CN; for X=F, Y=H, Br, I, CN). A larger series (X=H or F, Y=H, F, Cl, Br, I, At, CN) has been studied computationally with the SAC‐CI (symmetry‐adapted cluster configuration interaction) method. The outer‐valence ionization spectra calculated by the SAC‐CI method, including spin–orbit interaction, reproduced the experimental photoelectron spectra well, and quantitative assignments are given. When the extent of effective through‐cage interaction between the bridgehead halogen lone‐pair orbitals was defined in the usual way by orbital‐energy splitting, it was found to be larger than that mediated by other cages such as cubane, and was further enhanced by hexafluorination. The origin of the orbital‐energy splitting is analyzed in terms of cage structure, and it is pointed out that its relation to the degree of interaction between the bridgehead substituents is not as simple as is often assumed.  相似文献   

9.
Fluoropropionic acids of the general formula CF3CXYCO2H ( X = F, Cl, Br ; Y = F, Cl, Br, H ) were obtained by the sonochemically promoted reaction of fluorohalogenoethanes CF3CXYZ ( Z = Cl, Br ) with zinc and carbon dioxide. Penta- and tetrafluoroethanes ( X = Y = F and X = F, respectively ) gave good yields ( 35 – 47 % ) of the acids; with trifluoro derivatives the yields were substantially lower. Hydrogenolysis of the CCl and CBr bonds in CF3CFClCO2H and CF3CFBrCO2H afforded 2,3,3,3-tetrafluoropropionic acid.  相似文献   

10.
Relative stabilities and singlet–triplet energy differences are calculated for 24 C2NX azacarbenes (where X is H, F, Cl, and Br). Three skeletal arrangements are employed including azacyclopropenylidene, [(imino)methylene]carbene, and cyanocarbene. Halogens appear to alternate the electronic ground states of C2NH azacarbenes, from triplet to singlet states, at MP3/6‐311++G**, B1LYP/6‐311++G**, B3LYP/6‐311++G**, MP2/6‐311++G**, MP4(SDTQ)/6‐311++G**, QCISD(T)/6‐311++G**, CCSD(T)/6‐311++G**, CCSD(T)/cc‐pVTZ, G1, and G2 levels of theory. The aromatic characters of singlet cyclic azacyclopropenylidenes are measured using GIAO–NICS calculations. Linear correlations are found between the B3LYP/6‐311++G** calculated LUMO–HOMO energy gaps (ΔEHOMO ‐ LUMO) of the singlet carbenes versus their corresponding singlet–triplet energy separations (ΔE). Electrophilic characters are found for all singlet azacarbenes in their addition reactions to alkenes with the highest electrophilicity being exhibited for X = F. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:377–388, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20442  相似文献   

11.
1,2-rearrangements of carbenes: CCH2X(X = CH2, NH and O) are studied by using ab initio gradient method. Heteroatoms N and O stabilize the carbene and decrease its reactivity, mainly by changing frontier molecular orbitals, but retain the way of the reaction. The reaction starts from the attack of the migrating hydrogen on the carbene p AO and ends with the entrance of the hydrogen into the carbene σ orbital. Reactivities are in the order of X = CH8>NH>0. The reaction is exothermic or endothermic according to whether the product is a 4n+2 or 4n π electron molecule.  相似文献   

12.
Osmium(II) Phthalocyanines: Preparation and Properties of Di(acido)phthalocyaninatoosmates(II) “H[Os(X)2Pc2?]” (X = Br, Cl) reacts in basic medium or in the melt with (nBu4N)X forming less stable, diamagnetic, darkgreen (nBu4N)2[Os(X)2Pc2?]. Similar dicyano and diimidazolido(Im) complexes are formed by the reaction of “H[Os(Cl)2Pc2?]” with excess ligand in the presence of [BH4]?. The cyclic voltammograms show up to three quasireversible redoxprocesses: E1/2(I) = 0.13 V (X = CN), ?0.03 V (Im), ?0.13 V (Br) resp. ?0.18 V (Cl) is metal directed (OsII/III), E1/2(II) = 0.69 V (Cl), 0.71 V (Br), 0.83 V (CN), 1.02 V (Im) is ligand directed (Pc2?/?) and E1/2(III) = 1.17 V (Cl) resp. 1.23 V (Br) is again metal directed (OsIII/IV). Between the typical “B” (~16.2 kK) and “Q” (~29.4 kK), “N regions” (~34.1 kK) up to seven strong “extra bands” of the phthalocyanine dianion (Pc2?) are observed in the uv-vis spectrum. Within the row CN > Im > Br > Cl, most of the bands are shifted slightly, the “extra bands” considerably more to lower energy in correlation with E1/2(I). The vibrational spectra are typical for the Pc2? ligand with D4h symmetry. M.i.r. bands at 514, 909, 1 173 and 1 331 cm?1 are specific for hexa-coordinated low spin OsII phthalocyanines. In the resonance Raman (r.r.) spectra polarized, depolarized or anomalously polarized deformation and stretching vibrations of the Pc2? ligand will be selectively enhanced, if the excitation frequency coincides with “extra bands”. With excitation at ~19.5 kK the intensity of the symmetrical Os? X stretching vibration at 295 cm?1 (X = Cl), 252 cm?1 (X = Im) and 181 cm?1 (X = Br) is r.r. enhanced, too. The asymmetrical Os? X stretching vibration is observed in the f.i.r. spectrum at 345 cm?1 (X = CN), 274 cm?1 (X = Cl), 261 cm?1 (X = Im) and 200 cm?1 (X = Br).  相似文献   

13.
Mechanistic aspects of the effect of the X and Y substituents (X = Me, H, CF3, CN, Br, Cl, F, OH, NH2; Y = H, NMe2, NH2, CN, NO2) on the carbonyl bond in 4-YC6H4C(O)X compounds are discussed on the basis of the 13C and 17O NMR data.  相似文献   

14.
The effects of halogen substituents on the reactivity are characterized by the hybrid B3LYP and BHandHLYP functionals of density functional theory using the aug‐cc‐pVDZ basis set. The species XO and CY3H, where X, Y = F, Cl, and Br, have been chosen as model reactants in this work. Also, the mechanism of the hydrogen abstraction (HAT) reaction has been used to study the chemical reactivity of these anionic reactions. Our theoretical findings suggest that the relative reactivity of the CY3H + XO reactions increases as Y goes from F to Br and decreases as X goes from F to Br. Moreover, among all reactions investigated in this study, the special role of the Y has very dominant effect on activation of the C–H bond in CY3H when XO attacks the CY3H. Again, through the transition state theory the rate constants at 298–1000 K are also evaluated for the HAT reactions, indicating the lower the temperature the faster is the chemical reaction.  相似文献   

15.
The ring expansion reactions of unactivated alkynylcyclopropanes X‐C≡C‐C3H5 → X‐C=C4H5 (X = H, F, Cl, Me, OMe, NMe2, CMe3) were examined using the density functional theory calculations. All of the structures were completely optimized at the B3LYP/6‐311++G** level of theory. For clarify the effect of the cationic gold(I), we also added AuPH3+ as the catalyst into the system and the structures for Au were calculated at the B3LYP/LANL2DZ level of theory. The main finding of this work is that the singlet‐triplet splitting of X‐C≡C‐C3H5 play an important role in determining the kinetic and thermodynamic stability of the unactivated ring expansion reactions. When X‐C≡C‐C3H5 with a smaller singlet‐triplet splitting is utilized, the reaction has a smaller activation energy and a larger exothermicity.  相似文献   

16.
The aza‐ and arsa‐Wittig reactions HM=PH3 + O=CHX → HM=CHX + O=PH3 (M = N, As; X = H, F, Cl, Me, OMe, NMe2, CMe3) were examined using the density functional theory calculations. All of the structures were completely optimized at the B3LYP/6‐311++G** level of theory. The main finding of this work is that the difference between singlet‐triplet splitting of O=CHX and HM=PH3 play an important role in determining the kinetic and thermodynamic stability of the aza‐ and arsa‐Wittig reactions. When HM=PH3 with more ylidic character is utilized, the reaction has a smaller activation energy and a larger exothermicity.  相似文献   

17.
The cathodic reduction of the trihalophosphane complexes (CO)5CrPX3 (1a, X = Cl; 1b, X = Br) leads to the binuclear complexes (CO)5 Cr(X2PPX2)Cr(CO)5, (2a, X = Cl; 2b, X = Br). Reductive dehalogenation of coordinated organodihalophosphanes, (CO)5CrPRX2 (3a, R = Me, X = Cl; 3b, R = Ph, X = Cl; 3c, R = Me, X = Br; 3d, R = Ph, X = Br), in the presence of dimethyldisulfane yields bis(methylthio)organophosphane complexes, (CO)5CrPR(SCH3)2 (5a, R = Me; 5b, R = Ph). The phosphinidene complexes (CO)5 CrPR are discussed as the reactive intermediates.The organodibromophosphane complexes 3c and 3d can also be partially reduced in the presence of dimethyldisulfane, and (CO)5CrPBrR(SCH3) (7a, R = Me; 7b, R = Ph) is obtained. Radical intermediates are probable.  相似文献   

18.
On singlet excitation (λ=254 nm, acetonitrile) the diepoxydiene (E)- 7 undergoes photocleavage to the carbonyl ylide VII and the carbenes X and XI . The carbonyl ylide VII rearranges to the thermally labile dioxabicyclo [3.2.1]octene 20 or fragments via VIII to the aldehyde 9 and propyne. The carbene X , showing behaviour typical of vinyl carbenes, undergoes addition to the adjacent double bond furnishing the cyclopropene 11 . The carbene XI , however, undergoes an insertion reaction into the neighbouring oxirane C,C-bond leading to the oxetene (E)- 21 which can be isolated at ?78°, but at room temperature is rapidly transformed to the aldehyde 10 . On triplet excitation (acetone, λ>280 nm), however, (E)- 7 shows the typical behaviour of epoxydienes, undergoing C, O-cleavage of the oxirane and isomerization to 22, 23 and (E/Z)- 24 .  相似文献   

19.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

20.
Gas‐phase anionic reactions X? + CH3SY (X, Y = F, Cl, Br, I) have been investigated at the level of B3LYP/6‐311+G (2df,p). Results show that the potential energy surface (PES) of gas‐phase reactions X? + CH3SY (X, Y = Cl, Br, I) has a quadruple‐well structure, indicating an addition–elimination (A–E) pathway. The fluorine behaves differently in many respects from the other halogens and the reactions F? + CH3SY (Y = F, Cl, Br, I) correspond to deprotonation instead of substitution. The gas‐phase reactions X? + CH3SF (X = Cl, Br, I), however, follow an A–E pathway other than the last two out going steps (COM2 and PR) that proceeds via a deprotonation. The polarizable continuum model (PCM) has been used to evaluate the solvent effects on the energetics of the reactions X? + CH3SY (X, Y = Cl, Br, I). The PES is predicted to be unimodal in the solvents of high polarity. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号