首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite schemes are formed by global composition of several Lax–Wendroff steps followed by a diffusive Lax–Friedrichs or WENO step, which filters out the oscillations around shocks typical for the Lax–Wendroff scheme. These schemes are applied to the shallow water equations in two dimensions. The Lax–Friedrichs composite is also formulated for a trapezoidal mesh, which is necessary in several example problems. The suitability of the composite schemes for the shallow water equations is demonstrated on several examples, including the circular dam break problem, the shock focusing problem and supercritical channel flow problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
A rigorous study of the explicit Lax–Friedrichs scheme for its application to one‐dimensional shallow water flows is presented. The deficiencies of this method are identified and the way to overcome them are presented. It is compared to the explicit first order upwind scheme and to the explicit second order Lax–Wendroff scheme by means of the simulation of several test cases with exact solution. All three schemes in their best balanced version are applied to the simulation of a real river flood wave leading to very satisfactory results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a preconditioning technique for solving a two‐dimensional system of hyperbolic equations. The main attractive feature of this approach is that, unlike a technique based on simply extending the solver for a one‐dimensional hyperbolic system, convergence and stability analysis can be investigated. This method represents a genuine numerical algorithm for multi‐dimensional hyperbolic systems. In order to demonstrate the effectiveness of this approach, applications to solving a two‐dimensional system of Euler equations in supersonic flows are reported. It is shown that the Lax–Friedrichs scheme diverges when applied to the original Euler equations. However, convergence is achieved when the same numerical scheme is employed using the same CFL number to solve the equivalent preconditioned Euler system. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, we apply Davis's second‐order predictor‐corrector Godunov type method to numerical solution of the Savage–Hutter equations for modeling granular avalanche flows. The method uses monotone upstream‐centered schemes for conservation laws (MUSCL) reconstruction for conservative variables and Harten–Lax–van Leer contact (HLLC) scheme for numerical fluxes. Static resistance conditions and stopping criteria are incorporated into the algorithm. The computation is implemented on graphics processing unit (GPU) by using compute unified device architecture programming model. A practice of allocating memory for two‐dimensional array in GPU is given and computational efficiency of two‐dimensional memory allocation is compared with one‐dimensional memory allocation. The effectiveness of the present simulation model is verified through several typical numerical examples. Numerical tests show that significant speedups of the GPU program over the CPU serial version can be obtained, and Davis's method in conjunction with MUSCL and HLLC schemes is accurate and robust for simulating granular avalanche flows with shock waves. As an application example, a case with a teardrop‐shaped hydraulic jump in Johnson and Gray's granular jet experiment is reproduced by using specific friction coefficients given in the literature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The objective of this work is to develop a finite element model for studying fluid–structure interaction. The geometrically non‐linear structural behaviour is considered and based on large rotations and large displacements. An arbitrary Lagrangian–Eulerian (ALE) formulation is used to represent the compressible inviscid flow with moving boundaries. The structural response is obtained using Newmark‐type time integration and fluid response employs the Lax–Wendroff scheme. A number of numerical examples are presented to validate the structural model, moving mesh implantation of the ALE model and complete fluid–structure interaction. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is the initial investigation into a new Lagrangian cell‐centered hydrodynamic scheme that is motivated by the desire for an algorithm that resists mesh imprinting and has reduced complexity. Key attributes of the new approach include multidimensional construction, the use of flux‐corrected transport (FCT) to achieve second order accuracy, automatic determination of the mesh motion through vertex fluxes, and vorticity control. Toward this end, vorticity preserving Lax–Wendroff (VPLW) type schemes for the two‐dimensional acoustic equations were analyzed and then implemented in a FCT algorithm. Here, mesh imprinting takes the form of anisotropic dispersion relationships. If the stencil for the LW methods is limited to nine points, four free parameters exist. Two parameters were fixed by insisting that no spurious vorticity be created. Dispersion analysis was used to understand how the remaining two parameters could be chosen to increase isotropy. This led to new VPLW schemes that suffer less mesh imprinting than the rotated Richtmyer method. A multidimensional, vorticity preserving FCT implementation was then sought using the most promising VPLW scheme to address the problem of spurious extrema. A well‐behaved first order scheme and a new flux limiter were devised in the process. The flux limiter is unique in that it acts on temporal changes and does not place a priori bounds on the solution. Numerical results have demonstrated that the vorticity preserving FCT scheme has comparable performance to an unsplit MUSCL‐H algorithm at high Courant numbers but with reduced mesh imprinting and superior symmetry preservation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A finite‐volume multi‐stage (FMUSTA) scheme is proposed for simulating the free‐surface shallow‐water flows with the hydraulic shocks. On the basis of the multi‐stage (MUSTA) method, the original Riemann problem is transformed to an independent MUSTA mesh. The local Lax–Friedrichs scheme is then adopted for solving the solution of the Riemann problem at the cell interface on the MUSTA mesh. The resulting first‐order monotonic FMUSTA scheme, which does not require the use of the eigenstructure and the special treatment of entropy fixes, has the generality as well as simplicity. In order to achieve the high‐resolution property, the monotonic upstream schemes for conservation laws (MUSCL) method are used. For modeling shallow‐water flows with source terms, the surface gradient method (SGM) is adopted. The proposed schemes are verified using the simulations of six shallow‐water problems, including the 1D idealized dam breaking, the steady transcritical flow over a hump, the 2D oblique hydraulic jump, the circular dam breaking and two dam‐break experiments. The simulated results by the proposed schemes are in satisfactory agreement with the exact solutions and experimental data. It is demonstrated that the proposed FMUSTA schemes have superior overall numerical accuracy among the schemes tested such as the commonly adopted Roe and HLL schemes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A technique for constructing monotone, high resolution, multi‐dimensional upwind fluctuation distribution schemes for the scalar advection equation is presented. The method combines the second‐order Lax–Wendroff scheme with the upwind positive streamwise invariant (PSI) scheme via a fluctuation redistribution step, which ensures monotonicity (and which is a generalization of the flux‐corrected transport approach for fluctuation distribution schemes). Furthermore, the concept of a distribution point is introduced, which, when related to the equivalent equation for the scheme, leads to a ‘preferred direction’ for the limiting procedure, and hence to a new distribution of the fluctuation, which retains second‐order accuracy from the Lax–Wendroff scheme, even when the solution contains turning points. Experimental comparisons show that the new method compares favourably in terms of speed, accuracy and robustness with other, similar, techniques. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
A series of numerical schemes: first‐order upstream, Lax–Friedrichs; second‐order upstream, central difference, Lax–Wendroff, Beam–Warming, Fromm; third‐order QUICK, QUICKEST and high resolution flux‐corrected transport and total variation diminishing (TVD) methods are compared for one‐dimensional convection–diffusion problems. Numerical results show that the modified TVD Lax–Friedrichs method is the most competent method for convectively dominated problems with a steep spatial gradient of the variables. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
This article considers numerical implementation of the Crank–Nicolson/Adams–Bashforth scheme for the two‐dimensional non‐stationary Navier–Stokes equations. A finite element method is applied for the spatial approximation of the velocity and pressure. The time discretization is based on the Crank–Nicolson scheme for the linear term and the explicit Adams–Bashforth scheme for the nonlinear term. Comparison with other methods, through a series of numerical experiments, shows that this method is almost unconditionally stable and convergent, i.e. stable and convergent when the time step is smaller than a given constant. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A one-dimensional transient radiative transfer problem in the Cartesian coordinate system involving an absorbing and scattering medium illuminated by a short laser pulse has computationally been solved by use of a finite volume method (FVM). Previous works have shown that first order spatial interpolation schemes cannot represent the physics of the problem adequately as transmitted fluxes emerge before the minimal physical time required to leave the medium. In this paper, the Van Leer and Superbee flux limiters, combined with the second order Lax–Wendroff scheme, are used in an attempt to prevent this. Results presented in this work show that, despite significant improvement, flux limiters fail to completely eliminate the physically unrealistic behaviour. Therefore, a numerical approach into which temporal variables are transformed into frequency-dependent variables is presented in the companion paper to this work.  相似文献   

12.
The Harten–Lax–van Leer contact (HLLC) and Roe schemes are good approximate Riemann solvers that have the ability to resolve shock, contact, and rarefaction waves. However, they can produce spurious solutions, called shock instabilities, in the vicinity of strong shock. In strong expansion flows, the Roe scheme can admit nonphysical solutions such as expansion shock, and it sometimes fails. We carefully examined both schemes and propose simple methods to prevent such problems. High‐order accuracy is achieved using the weighted average flux (WAF) and MUSCL‐Hancock schemes. Using the WAF scheme, the HLLC and Roe schemes can be expressed in similar form. The HLLC and Roe schemes are tested against Quirk's test problems, and shock instability appears in both schemes. To remedy shock instability, we propose a control method of flux difference across the contact and shear waves. To catch shock waves, an appropriate pressure sensing function is defined. Using the proposed method, shock instabilities are successfully controlled. For the Roe scheme, a modified Harten–Hyman entropy fix method using Harten–Lax–van Leer‐type switching is suggested. A suitable criterion for switching is established, and the modified Roe scheme works successfully with the suggested method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
One of the techniques available for optimising parameters that regulate dispersion and dissipation effects in finite difference schemes is the concept of minimised integrated exponential error for low dispersion and low dissipation. In this paper, we work essentially with the two‐dimensional (2D) Corrected Lax–Friedrichs and Lax–Friedrichs schemes applied to the 2D scalar advection equation. We examine the shock‐capturing properties of these two numerical schemes, and observe that these methods are quite effective from the point of being able to control computational noise and having a large range of stability. To improve the shock‐capturing efficiency of these two methods, we derive composite methods using the idea of predictor/corrector or a linear combination of the two schemes. The optimal cfl number for some of these composite schemes are computed. Some numerical experiments are carried out in two dimensions such as cylindrical explosion, shock‐focusing, dam‐break and Riemann gas dynamics tests. The modified equations of some of the composite schemes when applied to the 2D scalar advection equation are obtained. We also perform some convergence tests to obtain the order of accuracy and show that better results in terms of shock‐capturing property are obtained when the optimal cfl obtained using minimised integrated exponential error for low dispersion and low dissipation is used. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Gas-kinetic schemes based on the BGK model are proposed as an alternative evolution model which can cure some of the limitations of current Riemann solvers. To analyse the schemes, simple advection equations are reconstructed and solved using the gas-kinetic BGK model. Results for gas-dynamic application are also presented. The final flux function derived in this model is a combination of a gas-kinetic Lax– Wendroff flux of viscous advection equations and kinetic flux vector splitting. These two basic schemes are coupled through a non-linear gas evolution process and it is found that this process always satisfies the entropy condition. Within the framework of the LED (local extremum diminishing) principle that local maxima should not increase and local minima should not decrease in interpolating physical quantities, several standard limiters are adopted to obtain initial interpolations so as to get higher-order BGK schemes. Comparisons for well-known test cases indicate that the gas-kinetic BGK scheme is a promising approach in the design of numerical schemes for hyperbolic conservation laws. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
The accuracy and consistency of a new cell‐vertex hybrid finite element/volume scheme are investigated for viscoelastic flows. Finite element (FE) discretization is employed for the momentum and continuity equation, with finite volume (FV) applied to the constitutive law for stress. Here, the interest is to explore the consequences of utilizing conventional cell‐vertex methodology for an Oldroyd‐B model and to demonstrate resulting drawbacks in the presence of complex source terms on structured and unstructured grids. Alternative strategies worthy of consideration are presented. It is demonstrated how high‐order accuracy may be achieved in steady state by respecting consistency in the formulation. Both FE and FV spatial discretizations are embedded in the scheme, with FV triangular sub‐cells referenced within parent triangular finite elements. Both model and complex flow problems are selected to quantify and assess accuracy, appealing to analysis and experimental validation. The test problem is that of steady sink flow, a pure extensional flow, which reflects some of the numerical difficulties involved in solving more generalized viscoelastic flows, where both source and flux terms may contribute equally to stress propagation. In addition, a complex transient filament‐stretching flow is chosen to compute the evolution of stress fields within liquid bridges. Shortcomings of the various stress upwinding schemes are discussed in this context, whilst dealing with such free‐surface type problems. Here, stress fluctuation distribution alone is advocated, and a Lax‐scheme is found to deliver accuracy and stability to the computational results, comparing well with the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper we present a class of semi‐discretization finite difference schemes for solving the transient convection–diffusion equation in two dimensions. The distinct feature of these scheme developments is to transform the unsteady convection–diffusion (CD) equation to the inhomogeneous steady convection–diffusion‐reaction (CDR) equation after using different time‐stepping schemes for the time derivative term. For the sake of saving memory, the alternating direction implicit scheme of Peaceman and Rachford is employed so that all calculations can be carried out within the one‐dimensional framework. For the sake of increasing accuracy, the exact solution for the one‐dimensional CDR equation is employed in the development of each scheme. Therefore, the numerical error is attributed primarily to the temporal approximation for the one‐dimensional problem. Development of the proposed time‐stepping schemes is rooted in the Taylor series expansion. All higher‐order time derivatives are replaced with spatial derivatives through use of the model differential equation under investigation. Spatial derivatives with orders higher than two are not taken into account for retaining the linear production term in the convection–diffusion‐reaction differential system. The proposed schemes with second, third and fourth temporal accuracy orders have been theoretically explored by conducting Fourier and dispersion analyses and numerically validated by solving three test problems with analytic solutions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Methods based on exponential finite difference approximations of h4 accuracy are developed to solve one and two‐dimensional convection–diffusion type differential equations with constant and variable convection coefficients. In the one‐dimensional case, the numerical scheme developed uses three points. For the two‐dimensional case, even though nine points are used, the successive line overrelaxation approach with alternating direction implicit procedure enables us to deal with tri‐diagonal systems. The methods are applied on a number of linear and non‐linear problems, mostly with large first derivative terms, in particular, fluid flow problems with boundary layers. Better accuracy is obtained in all the problems, compared with the available results in the literature. Application of an exponential scheme with a non‐uniform mesh is also illustrated. The h4 accuracy of the schemes is also computationally demonstrated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a numerical method for solving the two‐dimensional unsteady incompressible Navier–Stokes equations in a vorticity–velocity formulation. The method is applicable for simulating the nonlinear wave interaction in a two‐dimensional boundary layer flow. It is based on combined compact difference schemes of up to 12th order for discretization of the spatial derivatives on equidistant grids and a fourth‐order five‐ to six‐alternating‐stage Runge–Kutta method for temporal integration. The spatial and temporal schemes are optimized together for the first derivative in a downstream direction to achieve a better spectral resolution. In this method, the dispersion and dissipation errors have been minimized to simulate physical waves accurately. At the same time, the schemes can efficiently suppress numerical grid‐mesh oscillations. The results of test calculations on coarse grids are in good agreement with the linear stability theory and comparable with other works. The accuracy and the efficiency of the current code indicate its potential to be extended to three‐dimensional cases in which full boundary layer transition happens. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Several techniques to optimize parameters that regulate dispersion and dissipation effects in finite difference schemes have been devised in our previous works. They all use the notion that dissipation neutralizes dispersion. These techniques are the minimized integrated square difference error (MISDE) and the minimized integrated exponential error for low dispersion and low dissipation (MIEELDLD). It is shown in this work based on several numerical schemes tested that the technique of MIEELDLD is more accurate than MISDE to optimize the parameters that regulate dispersion and dissipation effects with the aim of improving the shock‐capturing properties of numerical methods. First, we consider the family of third‐order schemes proposed by Takacs. We use the techniques MISDE and MIEELDLD to optimize two parameters, namely, the cfl number and another variable which also controls dispersion and dissipation. Second, these two techniques are used to optimize a numerical scheme proposed by Gadd. Moreover, we compute the optimal cfl for some multi‐level schemes in 1D. Numerical tests for some of these numerical schemes mentioned above are performed at different cfl numbers and it is shown that the results obtained are dependent on the cfl number chosen. The errors from the numerical results have been quantified into dispersion and dissipation using a technique devised by Takacs. Finally, we make use of a composite scheme made of corrected Lax–Friedrichs and the two‐step Lax–Friedrichs schemes like the CFLF4 scheme at its optimal cfl number, to solve some problems in 2D, namely: solid body rotation test, acoustics and the circular Riemann problem. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes the validation of a finite element solver for an axisymmetric compressible flow with experimental values, especially velocities measured with a laser Doppler anemometer in the near wake of a circular cylinder. The equations under consideration are the Navier-Stokes equations with turbulent terms. A time-stepping scheme for the solution of these equations can be produced by applying a forward-time Taylor series expansion including time derivatives of second order. These time derivatives are evaluated in terms of space derivatives in the Lax–Wendroff fashion. The method is based on unstructured triangular grids with a high resolution in the radial direction. In order to predict the measured turbulent intensites more exactly, a modification of the Baldwin–Lomax model is necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号