首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics (MD) simulations are extensively used in the study of the structures and functions of proteins. Ab initio protein structure prediction is one of the most important subjects in computational biology, and many trials have been performed using MD simulation so far. Since the results of MD simulations largely depend on the force field, reliable force field parameters are indispensable for the success of MD simulation. In this work, we have modified atom charges in a standard force field on the basis of water-phase quantum chemical calculations. The modified force field turned out appropriate for ab initio protein structure prediction by the MD simulation with the generalized Born method. Detailed analysis was performed in terms of the conformational stability of amino acid residues, the stability of secondary structure of proteins, and the accuracy for prediction of protein tertiary structure, comparing the modified force field with a standard one. The energy balance between alpha-helix and beta-sheet structures was significantly improved by the modification of charge parameters.  相似文献   

2.
Different biomolecular force fields (OPLS‐AA, AMBER03, and GROMOS96) in conjunction with SPC, SPC/E and TIP3P water models are assessed for molecular dynamics simulations in a tetragonal lysozyme crystal. The root mean square deviations for the Ca atoms of lysozymes are about 0.1 to 0.2 nm from OPLS‐AA and AMBER03, smaller than 0.4 nm from GROMOS96. All force fields exhibit similar pattern in B‐factors, whereas OPLS‐AA and AMBER03 accurately reproduce experimental measurements. Despite slight variations, the primary secondary structures are well conserved using different force fields. Water diffusion in the crystal is approximately ten‐fold slower than in bulk phase. The directional and average water diffusivities from OPLS‐AA and AMBER03 along with SPC/E model match fairly well with experimental data. Compared to GROMOS96, OPLS‐AA and AMBER03 predict larger hydrophilic solvent‐accessible surface area of lysozyme, more hydrogen bonds between lysozyme and water, and higher percentage of water in hydration shell. SPC, SPC/E and TIP3P water models have similar performance in most energetic and structural properties, but SPC/E outperforms in water diffusion. While all force fields overestimate the mobility and electrical conductivity of NaCl, a combination of OPLS‐AA for lysozyme and the Kirkwood‐Buff model for ions is superior to others. As attributed to the steric restraints and surface interactions, the mobility and conductivity in the crystal are reduced by one to two orders of magnitude from aqueous solution. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

3.
We introduce PULCHRA, a fast and robust method for the reconstruction of full-atom protein models starting from a reduced protein representation. The algorithm is particularly suitable as an intermediate step between coarse-grained model-based structure prediction and applications requiring an all-atom structure, such as molecular dynamics, protein-ligand docking, structure-based function prediction, or assessment of quality of the predicted structure. The accuracy of the method was tested on a set of high-resolution crystallographic structures as well as on a set of low-resolution protein decoys generated by a protein structure prediction algorithm TASSER. The method is implemented as a standalone program that is available for download from http://cssb.biology.gatech.edu/skolnick/files/PULCHRA.  相似文献   

4.
In this article we compare different force fields that are widely used (Gromacs, Charmm-22/x-Plor, Charmm-27, Amber-1999, OPLS-AA) in biophysical simulations containing aqueous NaCl. We show that the uncertainties of the microscopic parameters of, in particular, sodium, and, to a lesser extent, chloride, translate into large differences in the computed radial-distribution functions. This uncertainty reflect the incomplete experimental knowledge of the structural properties of ionic aqueous solutions at finite molarity. We discuss possible implications on the computation of potential of mean force and effective potentials.  相似文献   

5.
The generation of bond, angle, and torsion parameters for classical molecular dynamics force fields typically requires fitting parameters such that classical properties such as energies and gradients match precalculated quantum data for structures that scan the value of interest. We present a program, Paramfit, distributed as part of the AmberTools software package that automates and extends this fitting process, allowing for simplified parameter generation for applications ranging from single molecules to entire force fields. Paramfit implements a novel combination of a genetic and simplex algorithm to find the optimal set of parameters that replicate either quantum energy or force data. The program allows for the derivation of multiple parameters simultaneously using significantly fewer quantum calculations than previous methods, and can also fit parameters across multiple molecules with applications to force field development. Paramfit has been applied successfully to systems with a sparse number of structures, and has already proven crucial in the development of the Assisted Model Building with Energy Refinement Lipid14 force field. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
In nanopore force spectroscopy (NFS) a charged polymer is threaded through a channel of molecular dimensions. When an electric field is applied across the insulating membrane, the ionic current through the nanopore reports on polymer translocation, unzipping, dissociation, and so forth. We present a new model that can be applied in molecular dynamics simulations of NFS. Although simplified, it does reproduce experimental trends and all‐atom simulations. The scaled conductivities in bulk solution are consistent with experimental results for NaCl for a wide range of electrolyte concentrations and temperatures. The dependence of the ionic current through a nanopore on the applied voltage is symmetric and, in the voltage range used in experiments (up to 2 V), linear and in good agreement with experimental data. The thermal stability and geometry of DNA is well represented. The model was applied to simulations of DNA hairpin unzipping in nanopores. The results are in good agreement with all‐atom simulations: the scaled translocation times and unzipping sequence are similar. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
8.
The authors describe the development and testing of a semiempirical free energy force field for use in AutoDock4 and similar grid-based docking methods. The force field is based on a comprehensive thermodynamic model that allows incorporation of intramolecular energies into the predicted free energy of binding. It also incorporates a charge-based method for evaluation of desolvation designed to use a typical set of atom types. The method has been calibrated on a set of 188 diverse protein-ligand complexes of known structure and binding energy, and tested on a set of 100 complexes of ligands with retroviral proteases. The force field shows improvement in redocking simulations over the previous AutoDock3 force field.  相似文献   

9.
We have carried out a large scale computational investigation to assess the utility of common small‐molecule force fields for computational screening of low energy conformers of typical organic molecules. Using statistical analyses on the energies and relative rankings of up to 250 diverse conformers of 700 different molecular structures, we find that energies from widely used classical force fields (MMFF94, UFF, and GAFF) show unconditionally poor energy and rank correlation with semiempirical (PM7) and Kohn–Sham density functional theory (DFT) energies calculated at PM7 and DFT optimized geometries. In contrast, semiempirical PM7 calculations show significantly better correlation with DFT calculations and generally better geometries. With these results, we make recommendations to more reliably carry out conformer screening.  相似文献   

10.
The widely used CHARMM additive all‐atom force field includes parameters for proteins, nucleic acids, lipids, and carbohydrates. In the present article, an extension of the CHARMM force field to drug‐like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug‐like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present article in the context of the model systems, pyrrolidine, and 3‐phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform “all‐CHARMM” simulations on drug‐target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

11.
12.
Transition metal ion complexation with proteins is ubiquitous across such diverse fields as neurodegenerative and cardiovascular diseases and cancer. In this study, the structures of divalent copper ion centers including three histidine and one oxygen‐ligated amino acid residues and the relative binding affinities of the oxygen‐ligated amino acid residues with these metal ion centers, which are debated in the literature, are presented. Furthermore, new force field parameters, which are currently lacking for the full‐length metal‐ligand moieties, are developed for metalloproteins that have these centers. These new force field parameters enable investigations of metalloproteins possessing these binding sites using molecular simulations. In addition, the impact of using the atom equivalence and inequivalence atomic partial charge calculation procedures on the simulated structures of these metallopeptides, including hydration properties, is described. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
A fluctuating charge (FQ) force field is applied to molecular dynamics simulations for six small proteins in explicit polarizable solvent represented by the TIP4P-FQ potential. The proteins include 1FSV, 1ENH, 1PGB, 1VII, 1H8K, and 1CRN, representing both helical and beta-sheet secondary structural elements. Constant pressure and temperature (NPT) molecular dynamics simulations are performed on time scales of several nanoseconds, the longest simulations yet reported using explicitly polarizable all-atom empirical potentials (for both solvent and protein) in the condensed phase. In terms of structure, the FQ force field allows deviations from native structure up to 2.5 A (with a range of 1.0 to 2.5 A). This is commensurate to the performance of the CHARMM22 nonpolarizable model and other currently existing polarizable models. Importantly, secondary structural elements maintain native structure in general to within 1 A (both helix and beta-strands), again in good agreement with the nonpolarizable case. In qualitative agreement with QM/MM ab initio dynamics on crambin (Liu et al. Proteins 2001, 44, 484), there is a sequence dependence of average condensed phase atomic charge for all proteins, a dependence one would anticipate considering the differing chemical environments around individual atoms; this is a subtle quantum mechanical feature captured in the FQ model but absent in current state-of-the-art nonpolarizable models. Furthermore, there is a mutual polarization of solvent and protein in the condensed phase. Solvent dipole moment distributions within the first and second solvation shells around the protein display a shift towards higher dipole moments (increases on the order of 0.2-0.3 Debye) relative to the bulk; protein polarization is manifested via the enhanced condensed phase charges of typical polar atoms such as backbone carbonyl oxygens, amide nitrogens, and amide hydrogens. Finally, to enlarge the sample set of proteins, gas-phase minimizations and 1 ps constant temperature simulations are performed on various-sized proteins to compare to earlier work by Kaminsky et al. (J Comp Chem 2002, 23, 1515). The present work establishes the feasibility of applying a fully polarizable force field for protein simulations and demonstrates the approach employed in extending the CHARMM force field to include these effects.  相似文献   

14.
The C96 and AMBER95 force fields were compared with small model peptides Ac‐(Ala)n‐NMe (Ac = CH3CO, NMe = NHCH3, n=2 and 3) in vacuo and in TIP3P water by computing the free‐energy profiles using multicanonical molecular dynamics method. The C96 force field is a modified version of the AMBER95 force field, which was adjusted to reproduce the energy difference between extended β‐ and constrained α‐helical energies for the alanine tetrapeptide, obtained by the high level ab initio MO method. The slight modification resulted in a large difference in the free energy profiles. The C96 force field prefers relatively extended conformers, whereas the AMBER95 force field favors turn conformations. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 748–762, 2000  相似文献   

15.
Protein structure prediction and design often involve discrete modeling of side‐chain conformations on structural templates. Introducing backbone flexibility into such models has proven important in many different applications. Backbone flexibility improves model accuracy and provides access to larger sequence spaces in computational design, although at a cost in complexity and time. Here, we show that the influence of backbone flexibility on protein conformational energetics can be treated implicitly, at the level of sequence, using the technique of cluster expansion. Cluster expansion provides a way to convert structure‐based energies into functions of sequence alone. It leads to dramatic speed‐ups in energy evaluation and provides a convenient functional form for the analysis and optimization of sequence‐structure relationships. We show that it can be applied effectively to flexible‐backbone structural models using four proteins: α‐helical coiled‐coil dimers and trimers, zinc fingers, and Bcl‐xL/peptide complexes. For each of these, low errors for the sequence‐based models when compared with structure‐based evaluations show that this new way of treating backbone flexibility has considerable promise, particularly for protein design. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

16.
Continuing our work on the determination of an off-lattice united-residue force field for protein-structure simulations, we determined and parameterized appropriate functional forms for the local-interaction terms, corresponding to the rotation about the virtual bonds (Utor), the bending of virtual-bond angles (Ub), and the energy of different rotameric states of side chains (Urot). These terms were determined by applying the Boltzmann principle to the distributions of virtual-bond torsional and virtual-bond angles and side-chain rotameric states, respectively, calculated from a data base of 195 high-resolution nonhomologous proteins. The complete energy function was constructed by combining the individual energy terms with appropriate weights. The weights were determined by optimizing the so-called Z-score value (which is the normalized difference between the energy of the native structure and the mean energy of non-native structures) of the histidine-containing phosphocarrier protein from Streptococcus faecalis (1PTF; an 88-residue α + β protein). To accomplish this, a database of Cα patterns was created using high-resolution nonhomologous protein structures from the Protein Data Bank, and the distributions of energy components of 1PTF were obtained by threading its sequence through ∼500 randomly chosen Cα-patterns from the X-ray structures in the PDB, followed by energy minimization, with the energy function incorporating initially guessed weights. The resulting minimized energies were used to optimize the Z-score value of 1PTF as a function of the weights of the various energy terms, and the new weights were used to generate new energy-component distributions. The process was iterated, until the weights used to generate the distributions and the optimized weights were self-consistent. The potential function with the weights of the various energy terms obtained by optimizing the Z-score value for 1PTF was found to locate the native structures of other test proteins (within an average RMS deviation of 3 Å): calcium-binding protein (4ICB), ubiquitin (1UBQ), α-spectrin (1SHG), major cold-shock protein (1MJC), and cytochrome b5 (3B5C) (which included α and β structures) as distinctively lowest in energy in similar threading experiments. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18: 874–887, 1997  相似文献   

17.
We explored the energy‐parameter space of our coarse‐grained UNRES force field for large‐scale ab initio simulations of protein folding, to obtain good initial approximations for hierarchical optimization of the force field with new virtual‐bond‐angle bending and side‐chain‐rotamer potentials which we recently introduced to replace the statistical potentials. 100 sets of energy‐term weights were generated randomly, and good sets were selected by carrying out replica‐exchange molecular dynamics simulations of two peptides with a minimal α‐helical and a minimal β‐hairpin fold, respectively: the tryptophan cage (PDB code: 1L2Y) and tryptophan zipper (PDB code: 1LE1). Eight sets of parameters produced native‐like structures of these two peptides. These eight sets were tested on two larger proteins: the engrailed homeodomain (PDB code: 1ENH) and FBP WW domain (PDB code: 1E0L); two sets were found to produce native‐like conformations of these proteins. These two sets were tested further on a larger set of nine proteins with α or α + β structure and found to locate native‐like structures of most of them. These results demonstrate that, in addition to finding reasonable initial starting points for optimization, an extensive search of parameter space is a powerful method to produce a transferable force field. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

18.
A force field of the triclinic framework of AlPO(4)-34, important in methanol-hydrocarbon conversion reactions, was developed using an empirical potential function. Molecular dynamics simulation of an AlPO(4)-34 triclinic framework segment of 1216 atoms, containing the template molecules isopropylamine and water, was performed with explicit consideration of atomic charges. The average RMS difference between instantaneous positions of the framework atoms during 1 ns simulation and their positions in the structure determined from single crystal X-ray diffraction was calculated, and the average structure of the flexible framework was determined. The computed Debye-Waller factors and simulated FTIR spectra are in good agreement with the experimental data. The new force field permits detailed molecular dynamics simulations of flexible, charged aluminophosphate molecular sieves which should lead to a better understanding of the catalytic processes and the crucial role played by templating molecules.  相似文献   

19.
Phosphorylation of histidine-containing proteins is a key step in the mechanism of many phosphate transfer enzymes (kinases, phosphatases) and is the first stage in a wide variety of signal transduction cascades in bacteria, yeast, higher plants, and mammals. Studies of structural and dynamical aspects of such enzymes in the phosphorylated intermediate states are important for understanding the intimate molecular mechanisms of their functioning. Such information may be obtained via molecular dynamics and/or docking simulations, but in this case appropriate force field parameters for phosphohistidine should be explicitly defined. In the present article we describe development of the GROMOS96 force field parameters for phosphoimidazole molecule--a realistic model of the phosphohistidine side chain. The parameterization is based on the results of ab initio quantum chemical calculations with subsequent refinement and testing using molecular mechanics and molecular dynamics simulations. The set of force constants and equilibrium geometry is employed to derive force field for the phosphohistidine moiety. Resulting parameters and topology are incorporated into the molecular modeling package GROMACS and used in molecular dynamics simulations of a phosphohistidine-containing protein in explicit solvent.  相似文献   

20.
Condensed‐phase computational studies of molecules using molecular mechanics approaches require the use of force fields to describe the energetics of the systems as a function of structure. The advantage of polarizable force fields over nonpolarizable (or additive) models lies in their ability to vary their electronic distribution as a function of the environment. Toward development of a polarizable force field for biological molecules, parameters for a series of sulfur‐containing molecules are presented. Parameter optimization was performed to reproduce quantum mechanical and experimental data for gas phase properties including geometries, conformational energies, vibrational spectra, and dipole moments as well as for condensed phase properties such as heats of vaporization, molecular volumes, and free energies of hydration. Compounds in the training set include methanethiol, ethanethiol, propanethiol, ethyl methyl sulfide, and dimethyl disulfide. The molecular volumes and heats of vaporization are in good accordance with experimental values, with the polarizable model performing better than the CHARMM22 nonpolarizable force field. Improvements with the polarizable model were also obtained for molecular dipole moments and in the treatment of intermolecular interactions as a function of orientation, in part due to the presence of lone pairs and anisotropic atomic polarizability on the sulfur atoms. Significant advantage of the polarizable model was reflected in calculation of the dielectric constants, a property that CHARMM22 systematically underestimates. The ability of this polarizable model to accurately describe a range of gas and condensed phase properties paves the way for more accurate simulation studies of sulfur‐containing molecules including cysteine and methionine residues in proteins. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号