首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We report the synthesis of phenyl‐capped oligothiophenes via improved synthetic schemes. These schemes are based on the Grignard coupling reaction and enable us to obtain the target compounds at high yields. The resulting materials have been fully characterized through nmr and ir spectroscopies. The ir analysis is particularly useful in characterizing the materials of higher molecular weight, since those materials are difficult to dissolve in organic solvent. We also show an improvement on preparation of halogenated (oligo)thiophenes that are used as intermediates for synthesizing the target compounds. An alternative synthetic route to the phenyl‐capped oligothiophenes that utilizes the Suzuki coupling reaction is presented as well.  相似文献   

2.
We report the synthesis of block and alternating thiophene/phenylene co‐oligomers that is based either on the Suzuki coupling reaction or on the Grignard reaction. These reaction schemes enable us to obtain the target compounds at reasonably high yields. The resulting materials have been fully characterized through the solid‐state 13C nmr and Fourier‐transform ir as well as the 1H nmr. Of these, the solid‐state 13C nmr and ir are particularly useful in characterizing the materials of higher molecular weight, since those materials are difficult to dissolve in organic solvents.  相似文献   

3.
We report the synthesis of various thiophene/phenylene co‐oligomers with a total number of thiophene and benzene (phenylene) rings of 6 to 8. These compounds include a phenyl‐capped sexithiophene, a thienyl‐capped quaterphenylene, as well as block and alternating co‐oligomers. The synthesis is based on either the Suzuki coupling reaction or the direct dimerization coupling. The latter method produces symmetric molecules with an even total ring number. These reaction schemes enabled us to obtain the target compounds in high quality. Although the resulting materials are difficult to dissolve in organic solvents and therefore difficult to identify by usual 1H nmr spectroscopy, they have successfully been identified through Fourier‐transform ir spectroscopy. The specific group frequencies of ring‐stretching and out‐of‐plane deformation modes are characteristic of the substitution pattern of the individual thiophene and benzene rings.  相似文献   

4.
We report the synthesis of various thiophene/phenylene co‐oligomers with a total number of thiophene and benzene (phenylene) rings of 5 and 6 with various terminal groups. Those terminal groups have been chosen from among alkyl groups, methoxy groups, trifluoromethyl groups, and cyano groups. The molecular backbone of these compounds comprises phenyl‐ or biphenylyl‐capped thiophene (or oligothiophene) or an alternating co‐oligomer. The synthesis is based on either the Suzuki coupling reaction or the Negishi coupling reaction. These reaction schemes enabled us to obtain the target compounds in high quality. In particular, the latter coupling method turned out to produce the compounds at a high yield. The terminal groups are expected to produce various functionalities based upon their electron donating character (alkyl groups and methoxy groups) or electron withdrawing character (trifluoromethyl groups and cyano groups). Additionally some of these groups bring about enhanced solubility. This will lead to the production of a diversity of modified compounds of thiophene/phenylene co‐oligomers. To give an example that demonstrates usefulness of the target compounds, we present optoelectronic data that are associated with their device applications.  相似文献   

5.
New fluoroalkyl end‐capped oligomers/silica gel polymer hybrids‐low‐molecular weight biocide (hibitane) composites were prepared by the reactions of tetraethoxysilane (TEOS) with fluoroalkyl end‐capped N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer, N,N‐dimethylacrylamide oligomers, and acrylic acid oligomers in methanol under acidic conditions at room temperature. The presence of hibitane in the composites was clarified by the use of elementary analyses of nitrogen in fluorinated acrylic acid oligomer composite and thermogravimetric analysis (TGA) of these fluorinated composites. Thermal stability of fluorinated composites thus obtained were found to increase significantly compared to those of the parent fluorinated oligomers. Thermal stability of fluorinated N,N‐dimethylacrylamide oligomer, acrylic acid oligomer/silica gel polymers hybrid‐hibitane composites decreased compared to those of the corresponding fluorinated oligomers/silica gel polymer hybrids; however, the thermal stability of fluorinated N‐(1,1‐dimethyl‐3‐oxobutylacryl)amide oligomer/silica gel polymer hybrid‐hibitane composite increased significantly compared to that of the corresponding fluorinated oligomer hybrid. The sol methanol solutions of these fluorinated composites were applied to the surface modification of glass to exhibit not only a strong oleophobicity imparted by end‐capped fluoroalkyl groups in oligomers but also a good hydrophilicity on the glass surface. Fluorinated oligomers/silica gel polymer hybrids‐hibitane composites were found to exhibit high anti‐bacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Therefore, these fluorinated hibitane composites are suggested to have high potential for new attractive functional materials through not only their excellent surface active property imparted by fluorine and their thermal stability but also through their anti‐bacterial activity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Fluoroalkyl end‐capped acrylic acid, N,N‐dimethylacrylamide, N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide and vinyltrimethoxysilane oligomers reacted with polyamic acid possessing trimethoxysilyl groups under alkaline conditions to yield the corresponding fluoroalkyl end‐capped oligomers/polyamic acid/silica nanocomposites. These isolated fluorinated composite powders were found to afford nanometer size‐controlled fine particles with a good dispersibility and stability in water and traditional organic solvents. We succeeded in preparing new fluoroalkyl end‐capped oligomers/polyimide/silica nanocomposites by the imidization of fluorinated polyamic acid silica nanocomposites through the stepwise heating at 110 and 270°C under air atmosphere conditions. These fluorinated polyimide/silica nanocomposites thus obtained were applied to the surface modification of glass and poly(methyl methacrylate) (PMMA) to exhibit good hydro‐ and oleo‐phobic characteristics imparted by fluoroalkyl groups in the composites on their surface. In addition, the surface morphology of the modified glass treated with these fluorinated nanocomposites were analyzed by using FE‐SEM and DFM. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Four D–A–D type co‐oligomers have been synthesized by Stille condensation between monostannyl derivatives of furan/thiophene/selenophene/3,4‐ethylenedioxythiophene (EDOT) and 4,7‐dibromo‐benzo[1,2,5]oxadiazole. All these co‐oligomers were successfully electrochemically polymerized in dichloromethane and characterized by spectroelectrochemistry. All four polymers possess narrow optical band gap. Spectroelectrochemical studies of polymer films on indium tin oxide revealed that the replacement of donor EDOT with furan/thiophene/selenophene has affected the low‐energy charge‐carrier (bipolaron) formation significantly. Kinetic studies based on chronoamperometry show that the polymer P5 (EDOT‐capped benzo[1,2,5]oxadiazole system) possess better electrochromic property with high transmittance (66%) in visible region than the other copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
An effective approach was presented for the synthesis of co‐cyclic(aromatic aliphatic disulfide) oligomers by catalytic oxidation of aromatic and aliphatic dithiols with oxygen in the presence of a copper‐amine catalyst. The aromatic dithiols can be 4,4′‐oxybis(benzenethiol), 4,4′‐diphenyl dithiol, 4,4′‐diphenylsulfone dithiol. The aliphatic dithiols can be 1,2‐ethanedithiol, 2,3‐butanedithiol, 1,6‐hexane dithiol. The co‐cyclic(aromatic aliphatic disulfide) oligomers were characterized by gradient HPLC, MALDI‐TOF‐MS, GPC, 1H‐NMR, TGA, and DSC techniques. The glass transition temperatures of these co‐cyclics ranged from ?11.3 to 56.6°C. In general, these co‐cyclic(aromatic aliphatic disulfide) oligomers are soluble in common organic solvents, such as CHCl3, THF, DMF, DMAc. These co‐cyclic oligomers readily underwent free radical ring‐opening polymerization in the melt at 180°C, producing linear, tough and high molecular weight poly(aromatic aliphatic disulfide)s. The glass transition temperatures of these polymers ranged from ?3.7 to 107.8°C that are higher than those of corresponding co‐cyclics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Highly water soluble [60]fullerene (C60) end‐capped vinyl ether (VE) oligomers with well‐defined structure were synthesized by living cationic polymerization technique. The addition reaction between 1‐octynylfulleride anion and oligomeric cationic species of VEs with pendant acetoxyl or malonic ester functions afforded the precursor C60 end‐capped oligomers. The living VE oligomers were prepared by living cationic polymerization of diethyl 2‐(vinyloxy)ethylmalonate (VOEM) and 2‐acetoxyethyl vinyl ether (AcOVE) by the CH3CH(OR)Cl/ZnI2 [R = CH2CH2OCOCH3 and CH2CH2CH(COOEt)2, respectively] initiating system. The precursors were obtained as dark brown gummy solid in 33 and 72% yield for AcOVE and VOEM, respectively. UV‐vis and 13C NMR spectroscopy indicated the formation of 1,2‐disubstituted dihydrofullerene derivatives. Hydrolysis of the precursors proceeded quantitatively to give the water‐soluble C60 end‐capped oligomers having oligo(sodium 2‐vinyloxyethylmalonate) [oligo(VOEMNa)] and oligo(2‐hydroxyethyl vinyl ether) [oligo(HOVE)] moieties. Solubility measurements revealed the water‐soluble C60 end‐capped oligomer with oligo(VOEMNa) chain to have the excellent aqueous solubility compared to that of the water‐soluble C60 derivatives thus far known; the maximum solubility in water is 96.6 mg/mL, which corresponds to 25.9 mg/mL of the C60 moiety. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3578–3585, 2000  相似文献   

10.
11.
A series of poly(fluorene‐coalt‐phenylene)s containing various generations of dendritic oxadiazole (OXD) pendent wedges were synthesized by the Suzuki polycondensation of OXD‐functionalized 1,4‐dibromophenylene with 9,9‐dihexylfluorene‐2,7‐diboronic ester. The obtained polymers possessed excellent solubility in common solvents and good thermal stability. Photophysical studies showed that the dendronized polymers appended with higher generations of OXD dendrons exhibited enhanced photoluminescence efficiencies and narrower values of the full width at half‐maximum. This was attributed to the shielding effect induced by the bulky dendritic OXD side chains, which prevented self‐quenching and suppressed the formation of aggregates/excimers. The energy transfer from the OXD dendrons to the polymer backbones was very efficient when excitation of the peripheral OXD dendrons resulted mainly in the polymer backbone emission alone. In particular, the photoluminescence emission intensities by the sensitized excitations of OXD dendrons in solid films of the polymers were all stronger than those by the direct excitations of their polymer conjugated backbones. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6765–6774, 2006  相似文献   

12.
Well‐defined polystyrene (PSt), poly(ε‐caprolactone) (PCL) or poly(2‐methyloxazoline) (POx) based polymers containing mid‐ or end‐chain 2,5‐ or 3,5‐dibromobenzene moieties were prepared by controlled polymerization methods, such as atom transfer radical polymerization (ATRP), ring opening polymerization (ROP), or cationic ring opening polymerization (CROP). These polymers were subsequently modified by Suzuki type coupling reactions with 2‐thiophene boronic acid. The resulting polymers, containing a conjugated sequence with 2‐thienyl groups at the extremities, could be further used as macromonomers in chemical oxidative polymerization in the presence of anhydrous FeCl3. Poly(thienyl‐phenylene)s having the respective PSt or PCL chains as lateral subtituents were obtained in this way. All the starting, intermediate, or final polymers were structurally analyzed by spectroscopic methods (1H and 13C NMR, IR) and gel permeation chromatography (GPC) measurements. Thermal behavior of the macromonomers and final polymers was investigated by differential scanning calorimetry (DSC) analyses. Optical properties of the polymers were monitored by UV and fluorescence spectroscopy. The emission spectra of the polymers show a clear bathochromic shift of the λmax emission in all the cases with respect to the monomers because of the extending of the conjugation length. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 848–865, 2007.  相似文献   

13.
The synthesis, characterization, and structure–property behavior of polyurethanes containing polyisobutylene (PIB)/poly(tetramethylene oxide) (PTMO) soft co‐segments and bis(4‐isocyanatocyclohexyl)methane (HMDI)/hexanediol (HDO) hard segments is presented. The mechanical (stress/strain, hardness, and hysteresis) properties of these novel polyurethanes were investigated over a broad composition range. PIB‐based polyurethanes with HMDI/HDO hard segments showed better mechanical properties than earlier polyurethanes containing highly crystalline hard segments. The addition of moderate amounts (20% by weight) of PTMO significantly increased both tensile strengths and elongation. In the presence of larger amounts of PIB, these polyurethanes are expected to possess oxidative/hydrolytic/enzymatic stabilities superior to commercially available polyurethanes. These polyurethanes are softer and exhibit hysteresis superior to or comparable with conventional polyurethanes. According to initial thermal studies, these materials show good melt processibility. Overall, the mechanical properties of PIB based hybrid polyurethanes are similar to commercially important polyurethane type biomaterials. Our results show that the incorporation of PTMO segments to PIB‐based polyurethanes significantly improves elastomeric properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5278–5290, 2009  相似文献   

14.
Low molecular weight (MW) polystyrenes were synthesized by radical polymerization in the presence of catalytic chain‐transfer agents. Synthetic conditions are controlled to produce molecules containing one methyl group at one end as well as a double bond at the other end, capped with a phenyl group. Individual oligomers were separated by liquid chromatography, and the properties were analyzed using NMR, ultraviolet–visible (UV–vis) spectroscopy, and size exclusion chromatography with light scattering. The UV–vis spectra, proton NMR spectra, and differential refractive‐index increments exhibit an MW dependence of up to six–eight monomer units. The obtained dependencies can be used for precise characterization of the molecular weight distribution of polystyrene obtained by catalytic chain transfer. The double‐bonded end groups were found to be exclusively in the transconfiguration for all oligomers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1099–1105, 2001  相似文献   

15.
In the past decades, 4‐phenylethynyl phthalic anhydride (4‐PEPA) has been the most important endcapper used for thermoset polyimide. As the isomer of4‐PEPA, 3‐phenylethynyl phthalic anhydride (3‐PEPA) has attracted our interest. In this article, 3‐PEPA was synthesized and a comparative study with 4‐PEPA on curing temperature, curing rate, thermal and mechanical properties of oligomers and cured polymers was presented. The new phenylethynyl endcapped model compound, N‐phenyl‐3‐phenylethynyl phthalimide, was synthesized and characterized. The molecular structure of model compound was determined via single‐crystal X‐ray diffraction and the thermal curing process was investigated by Fourier transform infrared. Differential scanning calorimetry clearly showed that the model compound from 3‐PEPA had about 20 °C higher curing onset and peak temperature than the 4‐PEPA analog. This result was further proved by the dynamic rheological analysis that the temperature of minimum viscosity for oligomers end‐capped with 3‐PEPA was above 20 °C higher than that of the corresponding 4‐PEPA endcapped oligomers with the same calculated number average molecular weight. The cured polymer from 3‐PEPA displayed slightly higher thermal oxidative stability than those from 4‐PEPA by thermogravimetric analysis. The thermal curing kinetics of 3‐PEPA endcapped oligomer (OI‐5) and 4‐PEPA endcapped oligomer (OI‐6) fitted a first‐order rate law quite well and revealed a similar rate acceleration trend. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4227–4235, 2008  相似文献   

16.
A new p‐phenylene–vinylene–thiophene‐based siloxane block copolymer has been synthesized. The copolymer consists of alternating rigid and flexible blocks. The rigid blocks are composed of phenylene–vinylene–thiophene‐based units, and the flexible blocks are derived from 1,3‐dialkyldisiloxane units. The former component acts as the chromophore, and allows fine tuning of band gap for blue‐light emission, while the latter imparts good solubility of the copolymer in organic solvents, and thus, should enhance processibility of the resulting copolymer. The thermal properties of the copolymer have been characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The photoluminescence (PL) of the copolymer in solution and in cast film has been studied. The effects of concentration on the PL intensity of the new copolymer in polymer blends with poly(methyl methacrylate) (PMMA) and poly(vinyl carbazole) (PVK) have also been described. Efficient energy transfer from PVK to the new block copolymer in the blended film was observed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1450–1456, 2000  相似文献   

17.
The application of a general synthetic approach to prepare molecular chains is reported. It is based on a step-by-step method each consisting first in a Pd-catalyzed reaction between ArI and HXAr′Br (Ar=aryl, Ar′=arylene) to give ArXAr′Br followed by a Cu-catalyzed replacement of Br by I to give ArXAr′I that can be reacted with HXAr′Br in the following step. The application of this method is here illustrated to prepare phenylene sulfide oligomers (X=S). Starting from RC6H4I-4 (R=H, MeO, NO2, NH2) and HSC6H4Br-x (x=2, 4) it is possible to grow chains in one direction to give X(C6H4S-m)nC6H4R-4 (n=1, X=Br, m=4, R=H, MeO, NO2, NH2, SMe and m=2, R=H, MeO, NO2; n=1, X=I, m=2 or 4, R=H, MeO, NO2; n=2, X=Br, m=2 or 4, R=H, MeO, NO2; n=2, X=I, m=4, R=MeO, NO2; n=3, X=Br, m=4, R=MeO, NO2; n=3, X=I, m=4, R=NO2 and n=4, X=Br or I, m=4, R=NO2). From HSC6H4Br-x and IC6H4I-4 the chains can grow in two directions to give X(C6H4S-4)nC6H4X-4 (n=2 or 4, X=Br or I), 2-XC6H4(SC6H4-4)nSC6H4X-2 (n=3 or 5, X=Br). Using diiodomesitylene the dithioethers C6HMe3-2,4,6-(SC6H4X-4)2-1,3 (X=Br, I) have been prepared. The series of sulfoxides X(C6H4S(O)-4)nC6H4R-4 (X=Br, n=1, R=MeO, n=3, R=NO2, n=4, R=Br; X=R=I, n=2) has been obtained from the corresponding thioethers and PhICl2.  相似文献   

18.
We demonstrate the ability of the reversible addition‐fragmentation chain transfer (RAFT) process to produce well‐defined block co‐oligomers for which each block has a narrow molecular weight distribution and degrees of polymerization ranging from 2 to 33. We exploit RAFT versatility to control the structure of the co‐oligomers and produce amphiphilic block co‐oligomers of styrene, acrylic acid and ethylene glycol. A detailed study shows that the amphiphilic diblock co‐oligomers self‐assemble in solution and form micelles or particles, depending on the hydrophobicity of the diblock. These oligomers present an excellent alternative to traditional amphiphilic molecules, by combining the properties of polymers with those of single molecule surfactants. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
A straightforward synthesis of end-capped bithienyl, quaterthienyl and sexithienyl systems incorporating benzo[c]thiophene units is presented.  相似文献   

20.
A transition metal free route to phenyl substituted oligophenylenes that tolerates halogens is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号