首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(β‐hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small‐angle X‐ray scattering (SAXS). As the PMA content increases in the blends, the glass‐transition temperature and cold‐crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium‐melting‐point depression, is −0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PHB. The radial growth rates of spherulites were analyzed with the Lauritzen–Hoffman model. The spherulites of PHB were volume‐filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1860–1867, 2000  相似文献   

2.
3.
Ferro‐ and piezo‐electric poly(vinylidene fluoride) (PVDF) thin film is reported to be obtained by using a poly(ionic liquid) (PIL) [poly(2‐(dimethylamino)ethyl methacrylate) methyl chloride quaternary salt] through solution route. The short range interactions between localized cationic ions of PIL and polar >CF2 of PVDF are responsible for modified polar γ‐PVDF (T3GT3Ḡ) formation. Modification in chain conformation of PVDF is confirmed by FTIR, XRD, and DSC studies suggesting the miscible PVDF–PIL (PPIL) blend. Up to 40 wt % loading of PIL in PVDF matrix enhances relative intensity of γ‐phase up to 50% in the entire crystalline phase. The P‐E hysteresis loop of PVDF‐PIL blends at 25 wt % PIL loading (PPIL‐25) thin film at sweep voltage of ±50 V shows excellent ferroelectric property with nearly saturated high remnant polarization ∼6.0 µC cm−2 owing to large proportion of γ‐PVDF. However, non‐polar pure PVDF thin film shows unsaturated hysteresis loop with 1.4 µC cm−2 remnant polarization. The operation voltage decreases effectively because of the polar γ‐phase formation in PPIL blended film. High‐sensitivity piezo‐response force microscopy shows electromechanical switching property at low voltages in PPIL‐25 thin films through local switching measurements, making them potentially suitable as ferroelectric tunnel barriers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 795–802  相似文献   

4.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

5.
Poly(ethylene‐bε‐caprolactone) (PE‐b‐PCL) diblock copolymers were synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) with α‐hydroxyl‐ω‐methyl polyethylene (PE‐OH) as a macroinitiator and ammonium decamolybdate (NH4)8[Mo10O34] as a catalyst. Polymerization was conducted in bulk (130–150°C) with high yield (87–97%). Block copolymers with different compositions were obtained and characterized by 1H and 13C NMR, MALDI‐TOF, SAXS, and DSC. End‐group analysis by NMR and MALDI‐TOF indicates the formation of α‐hydroxyl‐ω‐methyl PE‐b‐PCL. The PE‐b‐PCL degradation was studied using thermogravimetric analysis (TGA) and alkaline hydrolysis. The PCL block was hydrolyzed by NaOH (4M), without any effect on the PE segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We report the ring‐opening homopolymerization of α‐allyl(valerolactone), compound 2 , and its copolymerization with ε‐caprolactone and δ‐valerolactone using stannous(II) catalysis. Although the polymerization of substituted δ‐valerolactones has received little attention for the preparation of functional polyesters, we found that compound 2 may be incorporated in controllable amounts into copolymers with other lactones, or simply homopolymerized to give a highly functionalized, novel poly(valerolactone). The presence of the pendant allyl substituent had a substantial impact on the thermal properties of these materials relative to conventional polyesters prepared from lactones, and most of the polymers presented here are liquids at room temperature. Dihydroxylation of the pendant allyl groups gave polyesters with increased hydrophilicity that degraded more or less rapidly depending on their extent of functionality. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1983–1990, 2002  相似文献   

7.
New amphiphilic graft copolymers that have a poly(ε‐caprolactone) (PCL) biodegradable hydrophobic backbone and poly(4‐vinylpyridine) (P4VP) or poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PDMAEMA) hydrophilic side chains have been prepared by anionic polymerization of the corresponding 4VP and DMAEMA monomers using a PCL‐based macropolycarbanion as initiator. The water solubility of these amphiphilic copolymers is improved by quaternization, which leads to fully water‐soluble cationic copolymers that give micellar aggregates in deionized water with diameters ranging from 65 to 125 nm. In addition, to improve the hydrophilicity of PCL‐g‐P4VP, grafting of poly(ethylene glycol) (PEG) segments has been carried out to give a water‐soluble double grafted PCL‐g‐(P4VP;PEG) terpolymer.

  相似文献   


8.
Biodegradable copolymers of poly(lactic acid)‐block‐poly(ε‐caprolactone) (PLA‐b‐PCL) were successfully prepared by two steps. In the first step, lactic acid monomer is oligomerized to low molecular weight prepolymer and copolymerized with the (ε‐caprolactone) diol to prepolymer, and then the molecular weight is raised by joining prepolymer chains together using 1,6‐hexamethylene diisocyanate (HDI) as the chain extender. The polymer was carefully characterized by using 1H‐NMR analysis, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The results of 1H‐NMR and TGA indicate PLA‐b‐PCL prepolymer with number average molecular weights (Mn) of 4000–6000 were obtained. When PCL‐diols are 10 wt%, copolymer is better for chain extension reaction to obtain the polymer with high molecular weight. After chain extension, the weight average molecular weight can reach 250,000 g/mol, as determined by GPC, when the molar ratio of –NCO to –OH was 3:1. DSC curve showed that the degree of crystallization of PLA–PCL copolymer was low, even became amorphous after chain extended reaction. The product exhibits superior mechanical properties with elongation at break above 297% that is much higher than that of PLA chain extended products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A series of tri‐components copolymers with different molar ratios were synthesized via bulk ring‐opening copolymerization of trimethylene carbonate (TMC), L ‐lactide (LLA), and ε‐caprolactone (ε‐CL), using stannous octoate as catalyst. The sequence structure of the tercopolymer chain was characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and gel permeation chromatography (GPC). The results showed that although block sequence of the corresponding monomers still existed in the tercopolymer chain, the random tercopolymers were ultimately obtained due to the transesterification during polymerization. For the samples TP1 and TP2, longer sequence of LLA existed in the molecular chains. The thermal properties of tercopolymers were investigated by differential scanning calorimetry (DSC) and the mechanical properties of the resulting copolymers were studied by using a tensile tester. The results indicated that the properties of these copolymers could be adjusted by changing the compositions of the copolymers. The resulting tercopolymers are expected to have potential uses as nerve regeneration and other biomedicine materials. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Six‐arm star‐shaped poly(ε‐caprolactone) (sPCL) was successfully synthesized via the ring‐opening polymerization of ε‐caprolactone with a commercial dipentaerythritol as the initiator and stannous octoate (SnOct2) as the catalyst in bulk at 120 °C. The effects of the molar ratios of both the monomer to the initiator and the monomer to the catalyst on the molecular weight of the polymer were investigated in detail. The molecular weight of the polymer linearly increased with the molar ratio of the monomer to the initiator, and the molecular weight distribution was very low (weight‐average molecular weight/number‐average molecular weight = 1.05–1.24). However, the molar ratio of the monomer to the catalyst had no apparent influence on the molecular weight of the polymer. Differential scanning calorimetry analysis indicated that the maximal melting point, cold crystallization temperature, and degree of crystallinity of the sPCL polymers increased with increasing molecular weight, and crystallinities of different sizes and imperfect crystallization possibly did not exist in the sPCL polymers. Furthermore, polarized optical microscopy analysis indicated that the crystallization rate of the polymers was in the order of linear poly(ε‐caprolactone) (LPCL) > sPCL5 > sPCL1 (sPCL5 had a higher molecular weight than both sPCL1 and LPCL, which had similar molecular weights). Both LPCL and sPCL5 exhibited a good spherulitic morphology with apparent Maltese cross patterns, whereas sPCL1 showed a poor spherulitic morphology. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5449–5457, 2005  相似文献   

11.
Solution-grown, chain-folded lamellar crystals of poly(16-hexadecalactone) (PHDL) were crystallized isothermally from 1-hexanol at 70 degrees C. The morphology of lozenge-shaped crystals was studied by TEM and AFM. The lamellae are ca. 10 nm thick and the chains run orthogonal to the lamellar surface with folding along (110) and (110) planes. The crystal structure of PHDL was determined by XRD and election diffraction of single crystals. The chains are in the 2(1) helix conformation close to all-trans and the structure consists of an orthorhombic unit cell with a P2(1)2(1)2(1) space group with the lattice constants a = 0.746 +/- 0.001 nm, b = 0.504 +/- 0.001 nm, and c (chain axis) = 4.116 +/- 0.003 nm. There are two chains per unit cell, which exist in an antiparallel arrangement. Molecular packing structure has been studied in detail, taking into account both diffraction data and energy calculations. The setting angles, with respect to a axis, were +/-40 degrees for the corner and center chains, respectively. By using the electron and XRD data, the best molecular packing model was refined to R-factors of 0.168 and 0.196, respectively. A brief comparison of chain-packing structure is also made with related polymer structures.  相似文献   

12.
The poly(3‐hydroxbutyrate‐co‐3‐hydroxyvalerate)/poly(ε‐caprolactone) block copolymers (PHCLs) with three different weight ratios of PCL blocks (38%, named PHCL‐38; 53%, named PHCL‐53; and 60%, named PHCL‐60) were synthesized by using PHBV with two hydroxyl end groups to initiate ring‐opening polymerization of ε‐caprolactone. During DSC cooling process, melt crystallization of PHCL‐53 at relatively high cooling rates (9, 12, and 15 °C min?1) and PHCL‐60 at all the selected cooling rates corresponded to PCL blocks so that PHCL‐53 and PHCL‐60 were used to study the nonisothermal crystallization behaviors of PCL blocks. The kinetics of PCL blocks in PHCL‐53 and PHCL‐60 under nonisothermal crystallization conditions were analyzed by Mo equation. Mo equation was successful in describing the nonisothermal crystallization kinetics of PCL blocks in PHCLs. Crystallization activation energy were estimated using Kissinger's method. The results of kinetic parameters showed that both blocks crystallized more difficultly than corresponding homopolymers. With the increase of PCL content, the crystallization rate of PCL block increased gradually. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

13.
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002  相似文献   

14.
Novel biomimetic composite was prepared by the reaction of collagen and poly(γ‐benzyl L ‐glutamate)‐co‐poly(glutamic acid) (PBLG‐co‐PGA), which were crosslinked by non‐toxic crosslinking reagents 1‐ethyl‐(dimethylaminopropyl) carbodiimide (EDC) and N‐hydroxysuccinimide (NHS). The composite was characterized by FTIR and DSC. FTIR results confirmed that the collagen in the composite was successfully crosslinked with PBLG‐co‐PGA. DSC results showed that the composites possessed higher shrinkage temperature and higher thermal stability than the collagen. The water absorption test showed that the water absorbency of the composites increased with the increase in PBLG‐co‐PGA content in the composite. The studies of collagenase degradation and the tensile strength showed that the biostability and the tensile strength of the composites were significantly improved in comparison with that of the collagen. According to the investigations of cell adherent ratio and cell proliferation in vitro, the composite possessed good biocompatibility. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Chain‐folded lamellar crystals of the ten even‐even nylons: 6 6, 8 6, 8 8, 10 6, 10 8, 10 10, 12 6, 12 8, 12 10, and 12 12 have been grown from solution and their morphologies and structures studied using transmission electron microscopy, both imaging and diffraction. Sedimented mats were examined using X‐ray diffraction. The solution‐grown crystals are lath‐shaped lamellae and diffraction from these crystals, at room temperature, reveals that three crystalline forms are present in differing ratios. The crystals are composed of chain‐folded, hydrogen‐bonded sheets, the linear hydrogen bonds within which generate a progressive shear of the chains (p‐sheets). The sheets are found to stack in two different ways. Some p‐sheets stack with a progressive shear, to form the “αp structure”; others sheets stack with an alternate stagger, to form the “βp structure”. Both the αp and βp structures give two strong diffraction signals at spacings of 0.44 nm and 0.37 nm; these signals represent a projected intrasheet interchain distance (actual value 0.48 nm) and the intersheet spacing, respectively. Preparations of nylons 6 6, 8 6, 8 8, 12 6, and 12 8 consisted almost entirely of αp‐structure material, with only a trace of βp‐structure material being present. In contrast, nylons 10 6, 10 8, 10 10, 12 10, and 12 12 contained substantial quantities of both αp‐ and βp‐structure material, with αp‐structure material always being in the majority. Preparations of nylons 10 8, 12 10, and 12 12 also showed an additional diffraction signal at 0.42 nm; this signal is characteristic of the pseudohexagonal (high temperature) structure. The melting temperature of solution‐grown lamellae of these even‐even nylons decreases with decreasing linear amide density. On heating, the strong diffraction signals (0.44 nm and 0.37 nm) gradually moved together and merge at the Brill temperature to form a single diffraction signal (0.42 nm), characteristic of the pseudohexagonal structure. This single diffraction signal remained until melting. For nylons 6 6, 8 6, 8 8, 10 6, and 12 6, the Brill temperatures were substantially below the respective melting temperatures and the single 0.42 nm diffraction signal was stable over temperature ranges of 14 °C to 56 °C, depending on the nylon. Conversely, nylons 10 8, 10 10, 12 8, 12 10, and 12 12 had coincident melting and extrapolated Brill temperatures. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1209–1221, 2000  相似文献   

16.
Novel thermoplastic elastomers based on multi‐block copolymers of poly(l ‐lysine) (PLL), poly(N‐ε‐carbobenzyloxyl‐l ‐lysine) (PZLL), poly(ε‐caprolactone) (PCL), and poly(ethylene glycol) (PEG) were synthesized by combination of ring‐opening polymerization (ROP) and chain extension via l ‐lysine diisocyanate (LDI). SEC and 1H NMR were used to characterize the multi‐block copolymers, with number‐average molecular weights between 38,900 and 73,400 g/mol. Multi‐block copolymers were proved to be good thermoplastic elastomers with Young's modulus between 5 and 60 MPa and tensile strain up to 1300%. The PLL‐containing multi‐block copolymers were electrospun into non‐woven mats that exhibited high surface hydrophilicity and wettability. The polypeptide–polyester materials were biocompatible, bio‐based and environment‐friendly for promising wide applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3012–3018  相似文献   

17.
A series of activated urethane‐type derivatives of γ‐benzyl‐L ‐glutamate were synthesized, and their potential as monomers for polypeptide synthesis was investigated. The derivatives of the focus of this work were a series of N‐aryloxycarbonyl‐γ‐benzyl‐L ‐glutamate 1 , of which aryl groups were phenyl, 4‐chlorophenyl, and 4‐nitrophenyl. These urethanes 1 were reactive in polar solvents such as dimethylsulfoxide, N,N‐dimethylformamide (DMF), and N,N‐dimethylacetamide (DMAc), and were efficiently converted into poly(γ‐benzyl‐L ‐glutamate) (poly(BLG)) under mild conditions; at 60 °C without addition of any catalyst. Among the three urethanes, that having 4‐nitrophenoxycarbonyl group 1c was the most reactive to give poly(BLG) efficiently, as was expected from the highly electron deficient nature of the nitrophenoxycarbonyl group. On the other hand, the urethane 1a having phenoxycarbonyl group was also efficiently converted into poly(BLG), in spite of the intrinsically less electrophilicity of the phenoxycarbonyl group. In addition, the successful formation of poly(BLG) by the reaction of 1a favored its diluted concentration (0.1 M) much more than 2.0 M, the optimum initial concentration for 1c . 1H NMR spectroscopic analyses of the reactions in situ revealed that the predominant pathway from 1 to poly(BLG) involved the intramolecular cyclization of 1 into the corresponding N‐carboxyanhydride, with release of phenol and its successive ring‐opening polymerization with release of carbon dioxide. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2649–2657, 2008  相似文献   

18.
The crystallization of block copolymers (BCPs) under homogeneous and heterogeneous nucleation is currently well understood revealing the strong interplay of crystallization in competition to microphase separation. This article reports investigations on synthesis and crystallization processes in weakly interacting supramolecular pseudo‐BCPs, composed of poly(ε‐caprolactone) (PCL) and poly(isobutylene) (PIB) blocks, connected by a specifically interacting hydrogen bond (thymine/2,6‐diaminotriazine). Starting from ring opening polymerization of ε‐caprolactone, the use of “click”‐chemistry enabled the introduction of thymine endgroups onto PCL polymer, thus generating the fully thymine‐substituted pure PCLs ( 1a , 1b ) as judged via NMR and MALDI analysis. Physical mixing of 1a , 1b with a bivalent, bis(2,6‐diaminotriazine)‐containing molecule ( 2 ) generated the bivalent polymers BC1 and BC2 , whereas mixing of 1a or 1b with the 2,6‐diaminotriazine‐substituted PIB ( 3 ) generated the supramolecular pseudo‐BCPs BC3 and BC4 . Thermal investigations (DSC, Avrami analysis) revealed only minor changes in the crystallization behavior of BC1 – BC4 with Avrami exponents close to three, indicative of a confluence of the growing crystals during the crystallization process. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
We have synthesized poly(ε‐caprolactone‐co‐tert‐butyl glycidyl ether) (CL‐co‐BGE) statistical copolymers using 1‐tert‐butyl‐4,4,4‐tris(dimethylamino)‐2,2‐bis [tris(dimethylamino)phophoranylidenamino]‐2Λ5,4Λ5‐catenadi(phosphazene) (t‐BuP4) as the catalyst. The hydrolysis of the resulting polymers yields amphiphilic poly(ε‐caprolactone‐co‐glycidol) (CL‐co‐GD) copolymers. By use of the quartz crystal microbalance with dissipation (QCM‐D), we have investigated the enzymatic degradation of the copolymers. It is shown that the degradation rate increases with the content of hydrophilic (GD) units. (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide) (MTT) assay experiments demonstrate that the CL‐co‐GD copolymers have low cytotoxicity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 846–853  相似文献   

20.
The radiation crosslinking of poly(L ‐lactide) (PLLA) was investigated using triallyl isocyanurate (TAIC) as a crosslinking agent. The gel fraction of crosslinked PLLA increased with TAIC concentration and γ‐ray dose. Crosslinking of PLLA started at low TAIC contents and low γ‐ray dosage. Differential scanning calorimetry and dynamic mechanical thermal analysis revealed that PLLA was completely crosslinked at high weight ratios and high γ‐ray doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号