首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the equation K(t)u xx + u tt b 2 K(t)u = 0 in the rectangular domain D = “(x, t)‖ 0 < x < 1, −α < t < β”, where K(t) = (sgnt)|t| m , m > 0, and b > 0, α > 0, and β > 0 are given real numbers, we use the spectral method to obtain necessary and sufficient conditions for the unique solvability of the boundary value problem u(0, t) = u(1, t), u x (0, t) = u x (1, t), −αtβ, u(x, β) = φ(x), u(x,−α) = ψ(x), 0 ≤ x ≤ 1.  相似文献   

2.
In this paper we consider the Cauchy problem for the equation ∂u/∂t + uu/∂x + u/x = 0 for x > 0, t ⩾ 0, with u(x, 0) = u0(x) for x < x0, u(x, 0) = u0+(x) for x > x0, u0(x0) > u0+(x0). Following the ideas of Majda, 1984 and Lax, 1973, we construct, for smooth u0 and u0+, a global shock front weak solution u(x, t) = u(x, t) for x < ϕ(t), u(x, t) = u+(x, t) for x > ϕ(t), where u and u+ are the strong solutions corresponding (respectively) to u0 and u0+ and the curve t → ϕ(t) is defined by dϕ/dt (t) = 1/2[u(ϕ(t), t) + u+(ϕ(t), t)], t ⩾ 0 and ϕ(0) = x0. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

3.
This paper deals with the solutions defined for all time of the KPP equation ut = uxx + f(u),   0 < u(x,t) < 1, (x,t) ∈ ℝ2, where ƒ is a KPP‐type nonlinearity defined in [0,1]: ƒ(0) = ƒ(1) = 0, ƒ′(0) > 0, ƒ′(1) < 0, ƒ > 0 in (0,1), and ƒ′(s) ≤ ƒ′(0) in [0,1]. This equation admits infinitely many traveling‐wave‐type solutions, increasing or decreasing in x. It also admits solutions that depend only on t. In this paper, we build four other manifolds of solutions: One is 5‐dimensional, one is 4‐dimensional, and two are 3‐dimensional. Some of these new solutions are obtained by considering two traveling waves that come from both sides of the real axis and mix. Furthermore, the traveling‐wave solutions are on the boundary of these four manifolds. © 1999 John Wiley & Sons, Inc.  相似文献   

4.
In this paper, we consider the Cauchy problem: (ECP) ut−Δu+p(x)u=u(x,t)∫u2(y,t)/∣x−y∣dy; x∈ℝ3, t>0, u(x, 0)=u0(x)⩾0 x∈ℝ3, (0.2) The stationary problem for (ECP) is the famous Choquard–Pekar problem, and it has a unique positive solution ū(x) as long as p(x) is radial, continuous in ℝ3, p(x)⩾ā>0, and limx∣→∞p(x)=p¯>0. In this paper, we prove that if the initial data 0⩽u0(x)⩽(≢)ū(x), then the corresponding solution u(x, t) exists globally and it tends to the zero steady-state solution as t→∞, if u0(x)⩾(≢)ū(x), then the solution u(x,t) blows up in finite time. © 1997 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

5.
In this paper we condiser non-negative solutions of the initial value problem in ?N for the system where 0 ? δ ? 1 and pq > 0. We prove the following conditions. Suppose min(p,q)≥1 but pq1.
  • (a) If δ = 0 then u=v=0 is the only non-negative global solution of the system.
  • (b) If δ>0, non-negative non-globle solutions always exist for suitable initial values.
  • (c) If 0<?1 and max(α, β) ≥ N/2, where qα = β + 1, pβ = α + 1, then the conclusion of (a) holds.
  • (d) If N > 2, 0 < δ ? 1 and max (α β) < (N - 2)/2, then global, non-trivial non-negative solutions exist which belong to L(?N×[0, ∞]) and satisfy 0 < u(X, t) ? c∣x∣?2α and 0 < v(X, t) ? c ∣x∣?2bT for large ∣x∣ for all t > 0, where c depends only upon the initial data.
  • (e) Suppose 0 > δ 1 and max (α, β) < N/2. If N> = 1,2 or N > 2 and max (p, q)? N/(N-2), then global, non-trivial solutions exist which, after makinng the standard ‘hot spot’ change of variables, belong to the weighted Hilbert space H1 (K) where K(x) ? exp(¼∣x∣2). They decay like e[max(α,β)-(N/2)+ε]t for every ε > 0. These solutions are classical solutions for t > 0.
  • (f) If max (α, β) < N/2, then threre are global non-tivial solutions which satisfy, in the hot spot variables where where 0 < ε = ε(u0, v0) < (N/2)?;max(α, β). Suppose min(p, q) ? 1.
  • (g) If pq ≥ 1, all non-negative solutions are global. Suppose min(p, q) < 1.
  • (h) If pg > 1 and δ = 0, than all non-trivial non-negative maximal solutions are non-global.
  • (i) If 0 < δ ? 1, pq > 1 and max(α,β)≥ N/2 all non-trivial non-negative maximal solutions are non-global.
  • (j) If 0 < δ ≥ 1, pq > 1 and max(α,β) < N/2, there are both global and non-negative solutions.
We also indicate some extensions of these results to moe general systems and to othere geometries.  相似文献   

6.
ANOTEONTHEBEHAVIOROFBLOW┐UPSOLUTIONSFORONE┐PHASESTEFANPROBLEMSZHUNINGAbstract.Inthispaper,thefolowingone-phaseStefanproblemis...  相似文献   

7.
We consider the periodic boundary-value problem u tt u xx = g(x, t), u(0, t) = u(π, t) = 0, u(x, t + ω) = u(x, t). By representing a solution of this problem in the form u(x, t) = u 0(x, t) + ũ(x, t), where u 0(x, t) is a solution of the corresponding homogeneous problem and ũ(x, t) is the exact solution of the inhomogeneous equation such that ũ(x, t + ω) u x = ũ(x, t), we obtain conditions for the solvability of the inhomogeneous periodic boundary-value problem for certain values of the period ω. We show that the relation obtained for a solution includes known results established earlier. __________ Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 7, pp. 912–921, July, 2005.  相似文献   

8.
The existence and uniqueness of long time classical solutions of the Cauchy problem ut t+μut = div(a(u)▽u), where a(u) = 1+u and μ ≥ 0, are studied for the case of two space dimensions. Let the initial data u(0,.) = φ and ut(0,.) = ψ be supported compactly on R2. Then for every T > 0, such a solution exists on [0,T] whenever (φ,ψ) is small enough in H4 (R2) x H3(R2). A result on the asymptotic relation between the maximal T and the size of the initial data is given.  相似文献   

9.
We show that the supremum norm of solutions with small initial data of the generalized Benjamin-Bona-Mahony equation ut-△ut=(b,▽u)+up(a,▽u)in x?Rn,n≥2, with integer p≥3 , decays to zero like t-2/3 if n=2 and like t-1+6, for any δ0, if n≥3, when t tends to infinity. The proofs of these results are based on an analysis of the linear equation ut-△=(b,▽u)) and the associated oscillatory integral which may have nonisolated stationary points of the phase function.  相似文献   

10.
The possible continuation of solutions of the nonlinear heat equation in RN × R+ ut = Δum + up with m > 0, p > 1, after the blowup time is studied and the different continuation modes are discussed in terms of the exponents m and p. Thus, for m + p ≤ 2 we find a phenomenon of nontrivial continuation where the region {x : u(x, t) = ∞} is bounded and propagates with finite speed. This we call incomplete blowup. For N ≥ 3 and p > m(N + 2)/(N − 2) we find solutions that blow up at finite t = T and then become bounded again for t > T. Otherwise, we find that blowup is complete for a wide class of initial data. In the analysis of the behavior for large p, a list of critical exponents appears whose role is described. We also discuss a number of related problems and equations. We apply the same technique of analysis to the problem of continuation after the onset of extinction, for example, for the equation ut = Δum − up, m > 0. We find that no continuation exists if p + m ≤ 0 (complete extinction), and there exists a nontrivial continuation if p + m > 0 (incomplete extinction). © 1997 John Wiley & Sons, Inc.  相似文献   

11.
In this work we prove that the initial value problem of the Benney-Lin equation ut + uxxx + β(uxx + u xxxx) + ηuxxxxx + uux = 0 (x ∈ R, t ≥0 0), where β 〉 0 and η∈R, is locally well-posed in Sobolev spaces HS(R) for s ≥ -7/5. The method we use to prove this result is the bilinear estimate method initiated by Bourgain.  相似文献   

12.
In this paper, we propose a new high accuracy numerical method of O(k2 + k2h2 + h4) based on off-step discretization for the solution of 3-space dimensional non-linear wave equation of the form utt = A(x,y,z,t)uxx + B(x,y,z,t)uyy + C(x,y,z,t)uzz + g(x,y,z,t,u,ux,uy,uz,ut), 0 < x,y,z < 1,t > 0 subject to given appropriate initial and Dirichlet boundary conditions, where k > 0 and h > 0 are mesh sizes in time and space directions respectively. We use only seven evaluations of the function g as compared to nine evaluations of the same function discussed in  and . We describe the derivation procedure in details of the algorithm. The proposed numerical algorithm is directly applicable to wave equation in polar coordinates and we do not require any fictitious points to discretize the differential equation. The proposed method when applied to a telegraphic equation is also shown to be unconditionally stable. Comparative numerical results are provided to justify the usefulness of the proposed method.  相似文献   

13.
Sufficient conditions for the existence of an inertial manifold are found for the equation u tt + 2γu t − Δu = f(u, u t ), u = u(x, t), x ∈ Ω ⋐ ℝ N , u| Ω = 0, t > 0 under the assumption that the function f satisfies the Lipschitz condition.  相似文献   

14.
In this paper, we study the initial-boundary value problem of porous medium equation ρ(x)u t  = Δu m  + V(x)h(t)u p in a cone D = (0, ∞) × Ω, where V(x)  ~  |x|s, h(t)  ~  ts{V(x)\,{\sim}\, |x|^\sigma, h(t)\,{\sim}\, t^s}. Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let l denote the positive root of l 2 + (n − 2)l = ω 1. We prove that if m < p £ 1+(m-1)(1+s)+\frac2(s+1)+sn+l{m < p \leq 1+(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}, then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if ${p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}${p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}, then the problem has global solutions for some u 0 ≥ 0.  相似文献   

15.
We consider solutions u(t) to the 3d NLS equation i? t u + Δu + |u|2 u = 0 such that ‖xu(t)‖ L 2  = ∞ and u(t) is nonradial. Denoting by M[u] and E[u], the mass and energy, respectively, of a solution u, and by Q(x) the ground state solution to ?Q + ΔQ + |Q|2 Q = 0, we prove the following: if M[u]E[u] < M[Q]E[Q] and ‖u 0 L 2 ‖?u 0 L 2  > ‖Q L 2 ‖?Q L 2 , then either u(t) blows-up in finite positive time or u(t) exists globally for all positive time and there exists a sequence of times t n  → + ∞ such that ‖?u(t n )‖ L 2  → ∞. Similar statements hold for negative time.  相似文献   

16.
The aims of this paper are to discuss the extinction and positivity for the solution of the initial boundary value problem and Cauchy problem of ut = div([↓△u^m|p-2↓△u^m). It is proved that the weak solution will be extinct for 1 〈 p ≤ 1 + 1/m and will be positive for p 〉 1 + 1/m for large t, where m 〉 0.  相似文献   

17.
Four types of bounded wave solutions of CH-γ equation   总被引:5,自引:0,他引:5  
Recently, many authors have studied the following CH-γ equationut c0ux 3uux - α2(uxxt uuxxx 2uxuxx) γuxxx =0,where α2, c0 and γ are paramters. Its bounded wave solutions have been investigated mainly for the case α2 > 0. For the case α2 < 0, the existence of three bounded waves (regular solitary waves,compactons, periodic peakons) was pointed out by Dullin et al. But the proof has not been given.In this paper, not only the existence of four types of bounded waves periodic waves, compacton-like waves, kink-like waves, regular solitary waves, is shown, but also their explicit expressions or implicit expressions are given for the case α2 < 0. Some planar graphs of the bounded wave solutions and their numerical simulations are given to show the correctness of our results.  相似文献   

18.
We consider nonnegative solutions of initial-boundary value problems for parabolic equationsu t=uxx, ut=(um)xxand (m>1) forx>0,t>0 with nonlinear boundary conditions−u x=up,−(u m)x=upand forx=0,t>0, wherep>0. The initial function is assumed to be bounded, smooth and to have, in the latter two cases, compact support. We prove that for each problem there exist positive critical valuesp 0,pc(withp 0<pc)such that forp∃(0,p 0],all solutions are global while forp∃(p0,pc] any solutionu≢0 blows up in a finite time and forp>p csmall data solutions exist globally in time while large data solutions are nonglobal. We havep c=2,p c=m+1 andp c=2m for each problem, whilep 0=1,p 0=1/2(m+1) andp 0=2m/(m+1) respectively. This work was done during visits of the first author to Iowa State University and the Institute for Mathematics and its Applications at the University of Minnesota. The second author was supported in part by NSF Grant DMS-9102210.  相似文献   

19.
In this paper,we study the initial-boundary value problem of porous medium equation ut = Δum + h(t)up in a cone D =(0,∞) ×Ω,where h(t) ~ tσ.Let ω1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let l denote the positive root of l 2 +(n 2)l = ω1.We prove that if m p ≤ m + 2(σ+1) n+l + σ(m 1),then the problem has no global nonnegative solutions for any nonnegative u0 unless u0 = 0;if p m + 2(σ+1) n+l + σ(m1),then the problem has global solutions for some u 0 ≥ 0.  相似文献   

20.
We consider the existence and uniqueness of singular solutions for equations of the formu 1=div(|Du|p−2 Du)-φu), with initial datau(x, 0)=0 forx⇑0. The function ϕ is a nondecreasing real function such that ϕ(0)=0 andp>2. Under a growth condition on ϕ(u) asu→∞, (H1), we prove that for everyc>0 there exists a singular solution such thatu(x, t)→cδ(x) ast→0. This solution is unique and is called a fundamental solution. Under additional conditions, (H2) and (H3), we show the existence of very singular solutions, i.e. singular solutions such that ∫|x|≤r u(x,t)dx→∞ ast→0. Finally, for functions ϕ which behave like a power for largeu we prove that the very singular solution is unique. This is our main result. In the case ϕ(u)=u q, 1≤q, there are fundamental solutions forq<p*=p-1+(p/N) and very singular solutions forp-1<q<p*. These ranges are optimal. Dedicated to Professor Shmuel Agmon  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号