首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two synthetic routes were attempted for the synthesis of the novel bis(5,6‐dihydro‐S‐triazolo[3,4‐b]thiadiazines) 12a,b and 14 . In the first route the bis(aminotriazoles) 4a,b were reacted with the appropriate α‐haloketones or α‐haloesters to give the corresponding bis(S‐triazolo[3,4‐b]thiadiazines) 11a‐d followed by reduction with NaBH4. In the second route, the bis(Schiff bases) 13d were reacted with the appropriate α‐haloesters in refluxing DMF containing TEA to give the target compound 14 . Cyclocondensation of 4a,b with the appropriate bis(carbonyl) ethers 15a,b in refluxing acetic acid under high dilution conditions afforded the corresponding macrocyclic Schiff bases 16a‐c . The latter underwent alkylation with the appropriate halo compounds to give the corresponding alkylated derivatives 17a‐d .  相似文献   

2.
On the basis of the ZINDO program, we have designed a program to calculate the first‐order hyperpolarizability βijk and βμ according to the sum‐over‐states (SOS) expression. The first‐order hyperpolarizability of 4‐(dicyanomethylene)‐2,6‐bis‐(2′‐thiophene‐vinyl)‐pyran derivatives were studied. The calculated results were that the 4‐(dicyanomethylene)‐2,6‐bis‐(2′‐thiophene‐vinyl)‐pyran derivatives exhibit good nonlinearity with their β0 values, which are slightly less than that of the corresponding 2,6‐bis‐styryl‐4‐(dicyanomethylene)‐pyran derivatives. It does not agree with the auxiliary donor–acceptor effects theory. The 4‐(dicyanomethylene)‐2,6‐bis‐(2′‐thiophene‐vinyl)‐pyran derivatives, having two low‐lying electronic excited states that contribute to the molecular hyperpolarizability in an additive manner, are good candidates as chromophores due to their high nonlinearities and good thermal stability. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 65–72, 2001  相似文献   

3.
An unexpected compound (5‐amino‐4‐cyano‐2,3‐dihydrofuran‐2,3‐disulfonic acid disodium salt, 4 ) was isolated from the reaction of glyoxale bis hydrogen sulfite disodium salt with malononitrile. Its structure was undoubtly identified through crystal structure analysis. Compound 4 was highly stable and it was isolated easily and in a very high yield. Its reactivity was studied in the reactions with some hydrazine derivatives in order to obtain different pyridazine analogs.  相似文献   

4.
p‐Diacetyl benzene 1 undergoes bromination to afford p‐bromoacetyl phenacyl bromide 2 . Compound 2 reacts with twofold excess of malononitrile to afford 2‐{2‐[4‐(3,3‐Dicyanopropionyl)‐phenyl]‐2‐oxo‐ethyl}‐malononitrile 3 . Compound 3 could be cyclized to afford the 1,4‐phenylene‐bis‐furan derivative 4 . Compound 3 reacts also with a twofold excess of hydrazine hydrate and phenyl hydrazine under dry conditions at RT to afford the bis‐pyrazole derivatives 5a , 5b , respectively. The reaction of 5a , 5b with the same reagents in refluxing dioxane afforded the bis‐pyrazolopyridazine derivatives 7a , 7b , respectively. The azo coupling of compound 3 with arene diazonium salts afforded the bis‐pyrazole derivatives 9a , 9b , 9c . The β‐keto esters 10a , 10b react with benzaldehyde and malononitrile in a one pot synthesis to afford the pyran derivatives 11a , 11b . These latter compounds react with hydrazine hydrate and urea derivatives to afford the pyrano[2,3‐c]pyrazoles 15a , 15b and the pyrano[2,3‐d]pyrimidine derivatives 17a , 17b , respectively.  相似文献   

5.
Four new Schiff bases were designed and synthesized. 5‐Methyl‐4‐(4‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 1 ) and 5‐methyl‐4‐(2‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 2 ) were synthesized by interaction of 1‐phenyl‐3‐methyl‐4‐benzoyl‐2‐pyrazolin‐5‐one (PMBP) with o‐ and p‐phenylenediamine, respectively; 4,4′‐(1,2‐phenylenebis(azanediyl)bis(phenylmethanylylidene))bis(3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one) (compound 3 ) and 5‐methyl‐4‐(phenyl(2‐((3‐phenylallylidene)amino)phenylamino)methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 4 ) were synthesized by interaction of compound 2 with PMBP and cinnamaldehyde in an ethanolic medium, respectively. The molecular structures of the title compounds were first characterized by single‐crystal X‐ray diffraction, mass spectrometry, and elemental analysis. The title compounds were tested for antibacterial activity (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis) by disk diffusion method.  相似文献   

6.
Novel bis(imidazole‐2‐thion‐4‐yl)‐ phosphanes ( 2a–d ) were synthesized via lithiation of the precursor imidazole‐2‐thiones followed by the phosphanylation reaction. Oxidation of bis(imidazole‐2‐thion‐4‐yl)phosphane 2b–d with elemental sulfur and selenium led selectively and in good yields to the P‐thio ( 3b–d ) and P‐seleno ( 4c ) derivatives of bis(imidazole‐2‐thion‐4‐yl)phosphanes, respectively. The treatment of 2a,c with phosphorus trichloride gives the corresponding P‐chloro derivatives 5a,c . These compounds were unambiguously characterized by elemental analyses, spectroscopic and spectrometric methods, in addition by single‐crystal X‐ray structure analysis in the case of 2d . © 2012 Wiley Periodicals, Inc. Heteroatom Chem 00:1–7, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21043  相似文献   

7.
Novel bis‐chromeno[2,3‐b ]pyridine derivatives were synthesized with good yields by a clean and efficient methodologies involving one‐pot three‐component synthesis of bis‐aldehydes, malononitrile dimer, and dimedone in the presence of piperidine as a catalyst in EtOH. Depending on the length and position of the spacer in the bis‐aldehyde derivatives 1 , the reactions proceeded to give either the bis(2,4‐diamino‐tetrahydro‐5H‐chromeno[2,3‐b ]pyridine‐3‐carbonitriles) 4 or bis(4‐amino‐2,6‐dioxo‐hexahydro‐2H‐chromeno[2,3‐b ]pyridine‐3‐carbonitriles) 5 . All of the new compounds have been characterized by spectral data.  相似文献   

8.
A simple and easy synthesis of 2‐(3‐nitro‐phenyl)‐quinazoline‐4‐carboxylic acid ( 3 ) has been successfully developed through a one‐pot three‐component condensation reaction of (2‐amino‐phenyl)‐oxo‐acetic acid sodium salt ( 1 ) obtained from the hydrolysis of isatin with ammonium acetate and 3‐nitrobenzaldehyde. Some novel quinazoline‐ester derivatives 4‐7 were then obtained by the reaction between the new compound 3 and various alcohols. Then, quinazoline‐amide derivatives 10‐14 were synthesized from the reaction of various amines and 2‐(3‐nitro‐phenyl)‐quinazoline‐4‐carbonyl chloride ( 8 ), obtained by the reaction of compound 3 with SOCl2. Finally, some novel quinazoline‐azo derivatives 17‐19 were synthesized by the coupling reaction between β‐dicarbonyl compounds and the novel amino‐quinazoline derivative compound 15 , obtained by reduction of nitro‐quinazoline derivative compound 11 . Thus, a new series of quinazoline‐4‐carboxylic acid, ester, amide, and azo derivatives was synthesized and fully characterized by 1H NMR, 13C NMR, IR, and mass spectrometry analysis.  相似文献   

9.
An efficient and convenient method for the synthesis of bis(4H‐chromene‐3‐carbonitrile) derivatives by one‐pot, multicomponent reaction of bis‐aldehydes, malononitrile, and dimedone in the presence of a catalytic amount of piperidine is reported. Bis(2‐benzylidene‐1H‐indene)‐1,3‐(2H )‐dione derivatives were obtained as the main products as a result of reaction of the bis(arylidenemalononitriles) with indandione. The anti‐influenza H5N1 virus activities of the newly prepared bis‐chromene derivatives are also investigated.  相似文献   

10.
The first synthesis of 4,8‐dihydro‐bis‐furazano[3,4‐b:3′4′‐e]pyrazine bearing 2,2‐bis(methoxy‐NNO‐azoxy)ethyl groups has been developed. These compounds are obtained by aza‐Michael reaction of 1,1‐bis(methoxy‐NNO‐azoxy)ethene or its equivalents, such as 2,2‐bis(methoxy‐NNO‐azoxy)ethanol derivatives, with 4,8‐dihydro‐bis‐furazano[3,4‐b:3′4′‐e]pyrazine.  相似文献   

11.
The synthesis of 3,3′‐bis(dinitromethyl)‐5,5′‐azo‐1H‐1,2,4‐triazole ( 5 ) using the readily available starting material 2‐(5‐amino‐1H‐1,2,4‐triazol‐3‐yl)acetic acid ( 1 ) is described. All compounds were characterized by means of NMR, IR, and Raman spectroscopy. The energetic compound 5 was additionally characterized by single‐crystal X‐ray diffraction and DSC measurements. The sensitivities towards impact, friction and electrical discharge were determined. In addition, detonation parameters (e.g. heat of explosion, detonation velocity) of the target compound were computed using the EXPLO5 code based on the calculated (CBS‐4M) heat of formation and X‐ray density.  相似文献   

12.
3‐Alkyl‐2,5‐bis[p‐(hexa‐2,4‐dienoyloxy)phenyl]‐thiophene derivatives were synthesized by using Kumada coupling and Suzuki coupling reactions as key steps. The thermotropic liquid crystalline behavior of these compounds was investigated by optical polarized microscopy, monotropic nematic mesophases were observed in such compounds.  相似文献   

13.
3‐Oxo‐N‐[4‐(3‐oxo‐3‐phenylpropionylamino)‐phenyl]‐3‐phenylpropionamide 1 and its derivative 2‐benzoyl‐N‐[4‐(2‐benzoyl‐3‐(dimethylamino‐acryloylamino)‐phenyl]‐3‐dimethylaminoacrylamide 12 are used for the synthesis of the hitherto not known bis‐heterocyclic amine and bis‐heterocyclic carboxamide derivatives. Plausible mechanisms are discussed for the formation of the new compounds. J. Heterocyclic Chem., (2012).  相似文献   

14.
Using a variety of functionalization strategies, derivatives of 4, 4′‐bis(5‐nitro‐1,2,3‐2H‐triazole) were designed, synthesized, and characterized. The isomers were separated, their structures were confirmed with single‐crystal X‐ray analysis, and their properties were determined by differential scanning calorimetry, density, impact sensitivity, heat of formation, and detonation velocity and pressure (calculated by EXPLO5 V6.01). Those materials were found to exhibit superior detonation performance when compared with the other fully carbon‐nitrated bis(azoles).  相似文献   

15.
The first examples of air‐stable 20π‐electron 5,10,15,20‐tetraaryl‐5,15‐diaza‐5,15‐dihydroporphyrins, their 18π‐electron dications, and the 19π‐electron radical cation were prepared through metal‐templated annulation of nickel(II) bis(5‐arylamino‐3‐chloro‐8‐mesityldipyrrin) complexes followed by oxidation. The neutral 20π‐electron derivatives are antiaromatic and the cationic 18π‐electron derivatives are aromatic in terms of the magnetic criterion of aromaticity. The meso N atoms in these diazaporphyrinoids give rise to characteristic redox and optical properties for the compounds that are not typical of isoelectronic 5,10,15,20‐tetraarylporphyrins.  相似文献   

16.
Highly N‐deacetylated chitosan was chosen as a natural chiral origin for the synthesis of the selectors of chiral stationary phases. Therefore, chitosan was firstly acylated by various alkyl chloroformates yielding chitosan alkoxyformamides, and then these resulting products were further derivatized with 4‐methylphenyl isocyanate to afford chitosan bis(4‐methylphenylcarbamate)‐(alkoxyformamide). A series of chiral stationary phases was prepared by coating these derivatives on 3‐aminopropyl silica gel. The content of the derivatives on the chiral stationary phases was nearly 20% by weight. The chiral stationary phases prepared from chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(isopropoxyformamide) comparatively showed better enantioseparation capability than those prepared from chitosan bis(4‐methylphenylcarbamate)‐(n‐pentoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(benzoxyformamide). The tolerance against organic solvents of the chiral stationary phase of chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) was investigated, and the results revealed that this phase can work in 100% ethyl acetate and 100% chloroform mobile phases. Because as‐synthesized chiral selectors did not dissolve in many common organic solvents, the corresponding chiral stationary phases can be utilized in a wider range of mobile phases in comparison with conventional coating type chiral stationary phases of cellulose and amylose derivatives.  相似文献   

17.
The synthesis and structural elucidation of some novel 5,5′‐disubstituted spiro and nonspiro‐bis‐hydantoins are reported. The Bucherer Burge's method has been modified for the preparation of some 5,5′‐substituted bis(imidazolidine‐2,4‐dione) derivatives starting with diketones ( 1–5 ) and dialdehydes ( 6 , 7 ). In some cases, diastereoisomeric mixtures of compounds were obtained. The resulting bis‐hydantoins ( 8–11 , 13 , 14 ) have not to our knowledge been previously reported in the literature.  相似文献   

18.
An efficient and convenient method for synthesis of 3,5‐bis‐carbamoyl‐2,6‐dimethylpyridine derivatives was achieved in good to excellent yields by reaction of anilines with 3,5‐bis(3′,5′‐dimethyl‐1′‐pyrazolyl‐carbonyl)‐2,6‐dimethylpyridine, in which pyrazoles served as leaving groups. The structures of products were confirmed by spectra data and microanalysis.  相似文献   

19.
Lactone analogues of 3‐substituted oxindoles (=1,3‐dihydro‐2H‐indol‐2‐ones) and nonbenzoid oxa‐analogous isoindigoid or nonbenzoid isoindigoid dyes were prepared by the reactions of furan‐2,3‐diones with oxindole and Lawesson reagent (Schemes 1 and 3), respectively. So, new derivatives of 2‐oxobutanoic acid, bis‐furanone, and bis‐pyrrolone, which are potentially biologically active compounds, were synthesized for the first time.  相似文献   

20.
The 3,5‐bis(5‐carboxy‐6‐azauracil‐1‐yl)aniline ( 7 ) and 1,3,5‐tris(5‐carboxy‐6‐azauracil‐1‐yl)benzene ( 10 ) were prepared from 3‐amino‐5‐nitroacetanilide ( 1 ) via intermediates 2–6 . A series of other substituted 6‐azauracil derivatives 9, 11‐14 were also prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号