首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let be a 2‐factorization of the complete graph Kv admitting an automorphism group G acting doubly transitively on the set of vertices. The vertex‐set V(Kv) can then be identified with the point‐set of AG(n, p) and each 2‐factor of is the union of p‐cycles which are obtained from a parallel class of lines of AG(n, p) in a suitable manner, the group G being a subgroup of A G L(n, p) in this case. The proof relies on the classification of 2‐(v, k, 1) designs admitting a doubly transitive automorphism group. The same conclusion holds even if G is only assumed to act doubly homogeneously. © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

2.
We consider one‐factorizations of K2n possessing an automorphism group acting regularly (sharply transitively) on vertices. We present some upper bounds on the number of one‐factors which are fixed by the group; further information is obtained when equality holds in these bounds. The case where the group is dihedral is studied in some detail, with some non‐existence statements in case the number of fixed one‐factors is as large as possible. Constructions both for dihedral groups and for some classes of abelian groups are given. © 2002 John Wiley & Sons, Inc. J Combin Designs 10: 1–16, 2002  相似文献   

3.
It is known that a necessary condition for the existence of a 1‐rotational 2‐factorization of the complete graph K2n+1 under the action of a group G of order 2n is that the involutions of G are pairwise conjugate. Is this condition also sufficient? The complete answer is still unknown. Adapting the composition technique shown in Buratti and Rinaldi, J Combin Des, 16 (2008), 87–100, we give a positive answer for new classes of groups; for example, the groups G whose involutions lie in the same conjugacy class and having a normal subgroup whose order is the greatest odd divisor of |G|. In particular, every group of order 4t+2 gives a positive answer. Finally, we show that such a composition technique provides 2‐factorizations with a rich group of automorphisms. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 237–247, 2010  相似文献   

4.
For all integers n ≥ 5, it is shown that the graph obtained from the n‐cycle by joining vertices at distance 2 has a 2‐factorization is which one 2‐factor is a Hamilton cycle, and the other is isomorphic to any given 2‐regular graph of order n. This result is used to prove several results on 2‐factorizations of the complete graph Kn of order n. For example, it is shown that for all odd n ≥ 11, Kn has a 2‐factorization in which three of the 2‐factors are isomorphic to any three given 2‐regular graphs of order n, and the remaining 2‐factors are Hamilton cycles. For any two given 2‐regular graphs of even order n, the corresponding result is proved for the graph KnI obtained from the complete graph by removing the edges of a 1‐factor. © 2004 Wiley Periodicals, Inc.  相似文献   

5.
Triangle‐free quasi‐symmetric 2‐ (v, k, λ) designs with intersection numbers x, y; 0<x<y<kand λ>1, are investigated. It is proved that λ?2y ? x ? 3. As a consequence it is seen that for fixed λ, there are finitely many triangle‐free quasi‐symmetric designs. It is also proved that: k?y(y ? x) + x. Copyright © 2011 Wiley Periodicals, Inc. J Combin Designs 19:422‐426, 2011  相似文献   

6.
A 1‐factorization of a graph is a decomposition of the graph into edge disjoint perfect matchings. There is a well‐known method, which we call the ??‐construction, for building a 1‐factorization of Kn,n from a 1‐factorization of Kn + 1. The 1‐factorization of Kn,n can be written as a latin square of order n. The ??‐construction has been used, among other things, to make perfect 1‐factorizations, subsquare‐free latin squares, and atomic latin squares. This paper studies the relationship between the factorizations involved in the ??‐construction. In particular, we show how symmetries (automorphisms) of the starting factorization are inherited as symmetries by the end product, either as automorphisms of the factorization or as autotopies of the latin square. Suppose that the ??‐construction produces a latin square L from a 1‐factorization F of Kn + 1. We show that the main class of L determines the isomorphism class of F, although the converse is false. We also prove a number of restrictions on the symmetries (autotopies and paratopies) which L may possess, many of which are simple consequences of the fact that L must be symmetric (in the usual matrix sense) and idempotent. In some circumstances, these restrictions are tight enough to ensure that L has trivial autotopy group. Finally, we give a cubic time algorithm for deciding whether a main class of latin squares contains any square derived from the ??‐construction. The algorithm also detects symmetric squares and totally symmetric squares (latin squares that equal their six conjugates). © 2005 Wiley Periodicals, Inc. J Combin Designs 13: 157–172, 2005.  相似文献   

7.
The clique graph K(G) of a given graph G is the intersection graph of the collection of maximal cliques of G. Given a family ℱ of graphs, the clique‐inverse graphs of ℱ are the graphs whose clique graphs belong to ℱ. In this work, we describe characterizations for clique‐inverse graphs of K3‐free and K4‐free graphs. The characterizations are formulated in terms of forbidden induced subgraphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 257–272, 2000  相似文献   

8.
9.
A cube factorization of the complete graph on n vertices, Kn, is a 3‐factorization of Kn in which the components of each factor are cubes. We show that there exists a cube factorization of Kn if and only if n ≡ 16 (mod 24), thus providing a new family of uniform 3‐factorizations as well as a partial solution to an open problem posed by Kotzig in 1979. © 2004 Wiley Periodicals, Inc.  相似文献   

10.
Let C 4 be a cycle of order 4. Write e x ( n , n , n , C 4 ) for the maximum number of edges in a balanced 3‐partite graph whose vertex set consists of three parts, each has n vertices that have no subgraph isomorphic to C 4 . In this paper, we show that e x ( n , n , n , C 4 ) 3 2 n ( p + 1 ) , where n = p ( p ? 1 ) 2 and p is a prime number. Note that e x ( n , n , n , C 4 ) ( 3 2 2 + o ( 1 ) ) n 3 2 from Tait and Timmons's works. Since for every integer m , one can find a prime p such that m p ( 1 + o ( 1 ) ) m , we obtain that lim n e x ( n , n , n , C 4 ) 3 2 2 n 3 2 = 1 .  相似文献   

11.
We establish by means of a computer search that a complete graph on 14 vertices has 98,758,655,816,833,727,741,338,583,040 distinct and 1,132,835,421,602,062,347 nonisomorphic one‐factorizations. The enumeration is constructive for the 10,305,262,573 isomorphism classes that admit a nontrivial automorphism. © 2008 Wiley Periodicals, Inc. J Combin Designs 17: 147–159, 2009  相似文献   

12.
We consider k‐factorizations of the complete graph that are 1‐rotational under an assigned group G, namely that admit G as an automorphism group acting sharply transitively on all but one vertex. After proving that the k‐factors of such a factorization are pairwise isomorphic, we focus our attention to the special case of k = 2, a case in which we prove that the involutions of G necessarily form a unique conjugacy class. We completely characterize, in particular, the 2‐factorizations that are 1‐rotational under a dihedral group. Finally, we get infinite new classes of previously unknown solutions to the Oberwolfach problem via some direct and recursive constructions. © 2007 Wiley Periodicals, Inc. J Combin Designs 16: 87–100, 2008  相似文献   

13.
We enumerate all nonisomorphic perfect one‐factorizations of K 16 .  相似文献   

14.
Let G be a graph with vertex set V(G) and edge set E(G). Let k1, k2,…,km be positive integers. It is proved in this study that every [0,k1+…+km?m+1]‐graph G has a [0, ki]1m‐factorization orthogonal to any given subgraph H with m edges. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 267–276, 2002  相似文献   

15.
For which groups G of even order 2n does a 1‐factorization of the complete graph K2n exist with the property of admitting G as a sharply vertex‐transitive automorphism group? The complete answer is still unknown. Using the definition of a starter in G introduced in 4 , we give a positive answer for new classes of groups; for example, the nilpotent groups with either an abelian Sylow 2‐subgroup or a non‐abelian Sylow 2‐subgroup which possesses a cyclic subgroup of index 2. Further considerations are given in case the automorphism group G fixes a 1‐factor. © 2005 Wiley Periodicals, Inc. J Combin Designs  相似文献   

16.
P. Erd?s conjectured in [2] that r‐regular 4‐critical graphs exist for every r ≥ 3 and noted that no such graphs are known for r ≥ 6. This article contains the first example of a 6‐regular 4‐critical graph. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 286–291, 2002  相似文献   

17.
《组合设计杂志》2018,26(5):205-218
Let k, m, n, λ, and μ be positive integers. A decomposition of into edge‐disjoint subgraphs is said to be enclosed by a decomposition of into edge‐disjoint subgraphs if and, after a suitable labeling of the vertices in both graphs, is a subgraph of and is a subgraph of for all . In this paper, we continue the study of enclosings of given decompositions by decompositions that consist of spanning subgraphs. A decomposition of a graph is a 2‐factorization if each subgraph is 2‐regular and spanning, and is Hamiltonian if each subgraph is a Hamiltonian cycle. We give necessary and sufficient conditions for the existence of a 2‐factorization of that encloses a given decomposition of whenever and . We also give necessary and sufficient conditions for the existence of a Hamiltonian decomposition of that encloses a given decomposition of whenever and either or and , or , , and .  相似文献   

18.
《Journal of Graph Theory》2018,87(3):305-316
For a finite set V and a positive integer k with , letting be the set of all k‐subsets of V, the pair is called the complete k‐hypergraph on V, while each k‐subset of V is called an edge. A factorization of the complete k‐hypergraph of index , simply a ‐factorization of order n, is a partition of the edges into s disjoint subsets such that each k‐hypergraph , called a factor, is a spanning subhypergraph of . Such a factorization is homogeneous if there exist two transitive subgroups G and M of the symmetric group of degree n such that G induces a transitive action on the set and M lies in the kernel of this action. In this article, we give a classification of homogeneous factorizations of that admit a group acting transitively on the edges of . It is shown that, for and , there exists an edge‐transitive homogeneous ‐factorization of order n if and only if is one of (32, 3, 5), (32, 3, 31), (33, 4, 5), , and , where and q is a prime power with .  相似文献   

19.
Given two 2‐regular graphs F1 and F2, both of order n, the Hamilton‐Waterloo Problem for F1 and F2 asks for a factorization of the complete graph into α1 copies of F1, α2 copies of F2, and a 1‐factor if n is even, for all nonnegative integers α1 and α2 satisfying . We settle the Hamilton‐Waterloo Problem for all bipartite 2‐regular graphs F1 and F2 where F1 can be obtained from F2 by replacing each cycle with a bipartite 2‐regular graph of the same order.  相似文献   

20.
A k‐star is the graph K1,k. We prove a general theorem about k‐star factorizations of Cayley graphs. This is used to give necessary and sufficient conditions for the existence of k‐star factorizations of any power (Kq)s of a complete graph with prime power order q, products C × C ×··· × C of k cycles of arbitrary lengths, and any power (Cr)s of a cycle of arbitrary length. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 59–66, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号