首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the aid of density functional theory (DFT) calculations, we have investigated the mechanisms and stereoselectivities of the tandem cross Rauhut–Currier/cyclization reaction of methyl acrylate R1 with (E)‐2‐benzoyl‐3‐phenyl‐acrylonitrile R2 catalyzed by a tertiary amine DABCO. The results of the DFT calculations indicate that the favorable mechanism (mechanism A) includes three steps: the first step is the nucleophilic attack of DABCO on R1 to form intermediates Int1 and Int1‐1, the second step is the reaction of Int1 and Int1‐1 with R2 to generate intermediate Int2(SS,RR,SR&RS), and the last step is an intramolecular SN2 process to give the final product P(SS,RR,SR&RS) and release catalyst DABCO. The SN2 substitution is computed to be the rate‐determining step, whereas the second step is the stereoselectivity‐determining step. The present study may be helpful for understanding the reaction mechanism of similar tandem reactions.  相似文献   

2.
The Staudinger reaction of organic azides tBuN3, 1‐Ad‐N3, and DippN3 (Dipp = 2,6‐diisopropylphenyl) with (R)‐N,N′‐bis(diphenylphosphanyl)‐2,2′‐diamino‐1,1′‐binaphthyl [(R)‐Binam‐P], obtained by an optimized procedure from (R)‐(+)‐Binam, Ph2PCl, and Et3N in DCM, leads to preparation of a series of new C2‐symmetric bis‐iminophosphonamide ligands [(R)‐Binam(Ph2PN(H)R)2] [R = tBu ( 1 ), Ad ( 2 ), and Dipp ( 3 )]. The molecular structure of 1· 2DMSO was confirmed by X‐ray structure analysis.  相似文献   

3.
Ni‐catalyzed cross‐coupling of unactivated secondary alkyl halides with alkylboranes provides an efficient way to construct alkyl–alkyl bonds. The mechanism of this reaction with the Ni/ L1 ( L1 =transN,N′‐dimethyl‐1,2‐cyclohexanediamine) system was examined for the first time by using theoretical calculations. The feasible mechanism was found to involve a NiI–NiIII catalytic cycle with three main steps: transmetalation of [NiI( L1 )X] (X=Cl, Br) with 9‐borabicyclo[3.3.1]nonane (9‐BBN)R1 to produce [NiI( L1 )(R1)], oxidative addition of R2X with [NiI( L1 )(R1)] to produce [NiIII( L1 )(R1)(R2)X] through a radical pathway, and C? C reductive elimination to generate the product and [NiI( L1 )X]. The transmetalation step is rate‐determining for both primary and secondary alkyl bromides. KOiBu decreases the activation barrier of the transmetalation step by forming a potassium alkyl boronate salt with alkyl borane. Tertiary alkyl halides are not reactive because the activation barrier of reductive elimination is too high (+34.7 kcal mol?1). On the other hand, the cross‐coupling of alkyl chlorides can be catalyzed by Ni/ L2 ( L2 =transN,N′‐dimethyl‐1,2‐diphenylethane‐1,2‐diamine) because the activation barrier of transmetalation with L2 is lower than that with L1 . Importantly, the Ni0–NiII catalytic cycle is not favored in the present systems because reductive elimination from both singlet and triplet [NiII( L1 )(R1)(R2)] is very difficult.  相似文献   

4.
The efficient o‐carboryne precursor 1‐Li‐2‐OTf‐o‐C2B10H10 reacts with lithium amides at room temperature to give a series of N‐carboranyl amines in moderate to high isolated yields. This reaction is compatible with a broad substrate scope from primary to secondary, alkyl to aryl amines. The reaction mechanism is also proposed on the basis of experimental results and DFT calculations. This represents the first general and efficient method for the synthesis of 1‐NR1R2o‐carboranes.  相似文献   

5.
A number of novel chiral diamines 3 , (1R,2R)‐N‐monoalkylcyclohexane‐1,2‐diamines, were designed and synthesized from trans‐cyclohexane‐1,2‐diamine and applied to the catalytic asymmetric Henry reaction of benzaldehyde and nitromethane to provide β‐nitroalcohol in high yield (up to 99%) and good enantiomeric excess (up to 89%). By using ligand (1R,2R)‐N1‐(4‐methylpentan‐2‐yl)cyclohexane‐1,2‐diamine ( 3g ), the reaction was optimized in terms of the metal ion, temperature, solvent and base. Further experiments indicated that the complex, 3g –Cu(OAc)2, was an efficient catalyst in the asymmetric Henry reaction between different aldehydes and nitromethane, and the desired products have been obtained with high chemical yields (up to 99%) and high enantiomeric excess (up to 93%). The optimized catalyst promoted the diastereoselective Henry reaction of various aldehyde substrates and nitroalkane, which gave the corresponding anti‐selective adduct with up to 99% yield and 83:17 anti/syn selectivity. Upon scaling up to gram quantities, the β‐nitroalcohol was obtained in good yield (96%) with excellent selectivities (93% ee). The chiral induction mechanism was tentatively explained on the basis of a previously proposed transition‐state model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Cycloaddition reactions are highly attractive for post‐synthetic modification of metal–organic frameworks (MOFs). We report herein on cycloaddition reactions with PIZOF(R1,R2)s, which are porous interpenetrated Zr‐based MOFs with Zr6O4(OH)4(CO2)12 as the nodes and the dicarboxylates ?O2C[PE‐P(R1,R2)‐EP]CO2? (P: phenylene, E: ethynylene; R1, R2: side chains at the central phenylene unit) as the linkers. 1,3‐Dipolar cycloaddition between the pendant ethyne moieties of PIZOF(OMe,OCH2C?CH) and 4‐methylbenzyl azide resulted in 98 % conversion of the ethyne groups. Reactions of PIZOF(OMe,O(CH2)3furan) with maleimide, N‐methylmaleimide, and N‐phenylmaleimide converted 98, 99, and 89 % of the furan moieties into the Diels–Alder adducts. However, no reaction occurred with maleic anhydride. High‐resolution 1H NMR spectra were crucial in determining the conversion and identifying the reaction products. Of all the reagents (NaOD/D2O, D2SO4, Bu4NF, CsF, CsF/DCl, and KHF2) tested for the disassembly of the PIZOFs in [D6]DMSO, the combination of CsF and DCl was found to be the best. The disassembly at room temperature was fast (5–15 min), and after the addition of K2CO3 the 1H NMR data were identical to those of the diacids (=protonated linkers) dissolved in pure DMSO. This allowed for simple structure elucidation through data comparison. CsF/DCl dissolves not only PIZOFs but also the hydrolytically very stable UiO‐66.  相似文献   

7.
Iododerivatives of N‐methylcarbazole ( 1 ), N‐phenylcarbazole ( 2 ), N‐benzylcarbazole ( 3 ), 2‐methoxy‐N‐methylcarbazole ( 4 ) and 3‐acetamido‐N‐ethylcarbazole ( 5 ) are synthesised. N‐Iodosuccinimide (NIS) in tetrahydrofurane/H2SO4 (catalyst), a mixture of KIO3 ‐ KI ‐ H2SO4 (catalyst) in ethanol and a mixture of KIO3 ‐ KI in glacial AcOH as iodinating agents have been used and their uses have been compared. The preparation, isolation and characterization of compounds 1a, 1b, 1c, 1d, 2a, 2b, 3a, 3b, 4a, 4b, 4c and 5a are reported (mp, tR, Rf, 1H‐nmr, 13C‐nmr, IR and ms). All of them are described for the first time except 3,6‐diiodo‐N‐phenyl‐carbazole ( 2b ). Semiempirical PM3 calculations have been performed to predict reactivity of N‐substituted carbazoles and their iododerivatives. Theoretical and experimental results are discussed briefly.  相似文献   

8.
A bottom‐up strategy was used for the synthesis of cross‐linked copolymers containing the organocatalyst N‐{(1R)‐2′‐{[(4‐ethylphenyl)sulfonyl]amino}[1,1′‐binaphthalen]‐2‐yl}‐D ‐prolinamide derived from 2 (Scheme 1). The polymer‐bound catalyst 5b containing 1% of divinylbenzene as cross‐linker showed higher catalyst activity in the aldol reaction between cyclohexanone and 4‐nitrobenzaldehyde than 5a and 5c . Remarkably, the reaction in the presence of 5b was carried out under solvent‐free, mild conditions, achieving up to 93% ee (Table 1). The polymer‐bound catalyst 5b was recovered by filtration and re‐used up to seven times without detrimental effects on the achieved diastereo‐ and enantioselectivities (Table 2). The catalytic procedure with polymer 5b was extended to the aldol reaction under solvent‐free conditions of other ketones, including functionalized ones, and different aromatic aldehydes (Table 3). In some cases, the addition of a small amount of H2O was required to give the best results (up to 95% ee). Under these reaction conditions, the cross‐aldol reaction between aldehydes proceeded in moderate yield and diastereo‐ and enantioselectivity (Scheme 2).  相似文献   

9.
A simple and highly efficient stereoselective total synthesis of the 6‐alkylated pyranones (6R)‐6‐[(1E,4R,6R)‐4,6‐dihydroxy‐10‐phenyldec‐1‐en‐1‐yl]‐5,6‐dihydro‐2H‐pyran‐2‐one ( 1 ) and (6S)‐5,6‐dihydro‐6‐[(2R)‐2‐hydroxy‐6‐phenylhexyl]‐2H‐pyran‐2‐one ( 2 ) was developed using Crimmins' aldol reaction, SmI2 reduction, GrubbsII‐catalyzed olefin cross‐metathesis, and Still's modified Horner? Wadsworth? Emmons reaction.  相似文献   

10.
The reaction of the enolizable thioketone (1R,4R)‐thiocamphor (= (1R,4R)‐1,7,7‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 1 ) with (R)‐2‐vinyloxirane ( 2 ) in the presence of a Lewis acid such as SnCl4 or SiO2 in anhydrous CH2Cl2 gave the spirocyclic 1,3‐oxathiolane 3 with the vinyl group at C(4′), as well as the isomeric enesulfanyl alcohol 4 . In the case of SnCl4, an allylic alcohol 5 was obtained in low yield in addition to 3 and 4 (Scheme 2). Repetition of the reaction in the presence of ZnCl2 yielded two diastereoisomeric 4‐vinyl‐1,3‐oxathiolanes 3 and 7 together with an alcohol 4 , and a ‘1 : 2 adduct’ 8 (Scheme 3). The reaction of 1 and 2 in the presence of NaH afforded regioselectively two enesulfanyl alcohols 4 and 9 , which, in CDCl3, cyclized smoothly to give the corresponding spirocyclic 1,3‐oxathiolanes 3, 10 , and 11 , respectively (Scheme 4). In the presence of HCl, epimerization of 3 and 10 occurred to yield the corresponding epimers 7 and 11 , respectively (Scheme 5). The thio‐Claisen rearrangement of 4 in boiling mesitylene led to the allylic alcohol 12 , and the analogous [3,3]‐sigmatropic rearrangement of the intermediate xanthate 13 , which was formed by treatment of the allylic alcohol 9 with CS2 and MeI under basic conditions, occurred already at room temperature to give the dithiocarbonate 14 (Schemes 6 and 7). The presented results show that the Lewis acid‐catalyzed as well as the NaH‐induced addition of (R)‐vinyloxirane ( 2 ) to the enolizable thiocamphor ( 1 ) proceeds stereoselectively via an SN2‐type mechanism, but with different regioselectivity.  相似文献   

11.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

12.
The Ugi four‐component reaction, a powerful method for the synthesis of diverse dipeptide‐like derivatives in combinatorial chemistry, was used to synthesize (S)‐1′‐{N‐[1‐(anthracen‐9‐yl)‐2‐(tert‐butylamino)‐2‐oxoethyl]‐N‐(4‐methoxyphenyl)carbamoyl}ferrocene‐1‐carboxylic acid dichloromethane disolvate, [Fe(C6H5O2)(C33H31N2O3)]·2CH2Cl2, (I), and (S)‐2‐(anthracen‐9‐yl)‐Ntert‐butyl‐2‐[N‐(4‐methylphenyl)ferrocenylformamido]acetamide, [Fe(C5H5)(C33H31N2O2)], (II). They adopt broadly similar molecular conformations, with near‐eclipsed cyclopentadienyl rings and near‐perpendicular amide planes in their dipeptide‐like chains, one of which is almost coplanar with its attached cyclopentadienyl ring but perpendicular to the aromatic ring bound to the N atom. In the supramolecular structure of (I), a two‐dimensional network is constructed based on molecular dimers and a combination of intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds, forming R22(11), R22(16), R22(22) and C(9) motifs. These two‐dimensional networks are connected by C—H...O and C—H...Cl contacts to create a three‐dimensional framework, where one dichloromethane solvent molecule acts as a bridge between two neighbouring networks. In the packing of (II), classical hydrogen bonds are absent and an infinite one‐dimensional chain is generated via a combination of C—H...O hydrogen bonds and C—H...π interactions, producing a C(7) motif. This work describes a simple synthesis and the supramolecuar structures of ferrocenyl dipeptide‐like compounds and is significant in the development of redox‐active receptors.  相似文献   

13.
Alkylation of homofullerene [6,6]‐C60(CF2)2? dianion with the set of alkyl halides, RX, was established to demonstrate an effect of RX nature on the conversion, product composition, and regioselectivity. The respective C60(CF2)RH, C60(CF2)R2 and C60(CF2)RR’’ compounds were obtained in the reaction with sterically unhindered RX, isolated by HPLC and unequivocally characterized. The kinetic studies evidenced SN2 mechanism for both alkylation steps, yielding mono‐ and dialkylated C60(CF2), respectively, and indicated the negative charge localization at the bridgehead carbon atoms as well as a steric hindrance of the CF2 moiety likely to be a key factors for the SN2 reaction mechanism and observed regioselectivity. The significant difference in the rate constants of the first and the second steps is attributed to the different activation barriers predicted by DFT calculations which makes possible to develop synthetic methods for the regioselective preparation of monoalkylated C60(CF2)RH and heterodialkylated C60(CF2)RR’’ derivatives.  相似文献   

14.
The bis‐sulfonamide m‐C6H4(SO2NHPh)2 efficiently promotes the ring‐opening polymerization of lactide when combined with tertiary amines, such as N,N‐dimethylaminopyridine. Polylactides of controlled molecular weights (Mn up to 17,700 g mol?1) and very narrow molecular weight distributions (Mw/Mn < 1.11) are obtained under mild conditions and in a living fashion. The reaction takes place through a bifunctional mechanism involving activation of both the alcohol and the monomer. Modulation of the sulfonamide component supports cooperative dual hydrogen‐bonding of lactide involving the two (SO2NHAr) moieties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 959–965, 2010  相似文献   

15.
Chiral ligand (A)‐N,N′‐Bis(2‐hydroxy‐3,5‐di‐tert‐butyl‐arylmethyl)‐1,1′‐binaphthalene‐2,2′‐diamine derived from the reduction of Schiff base (R)‐2,2′‐bis (3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)‐1, 1′‐binaphthyl with LiAlH4, is fairly effective in the asymmetric addition reaction of diethylzinc to aldehydes by which good yields (46%‐94%) of the corresponding sec‐alcohols can be obtained in moderate ee (51%‐79%) with R configuration for a variety of aldehydes.  相似文献   

16.
A 1:1 geometrically oriented encounter complex between thieno[2,3‐b]pyridine (1) and 4‐nitrophenyldia‐zoacetate (2) is proposed to account for the dominant formation (ca. 64%) of the 2‐isomer in the mixture of 4‐nitrophenyl‐l isomers obtained previously. A mechanism involving one‐electron transfer from 1 to 2 plus fragmentation of 2· into 4‐nitrophenyl free radical, N2, and acetate ion is invoked. Formation of other isomers is discussed. It is noted that there is a close correlation between orientational rules plus mechanisms of reaction for numerous free‐radical substitutions (SR) with SN reactions of alkyllithiums on furan, thiophene, N‐alkylpyrroles, pyridine, and their condensed aromatic molecules, including 1, as substrates. Also isomeric selectivities for SE, SN, and SR substitutions into 1 were shown to be qualitatively consistent with one another. While SE reactions occur largely at position 3 and then at 2, SN and SR reactions occur either at 2 or 6. Selectivity for positions 4 or 5 is small or zero.  相似文献   

17.
The title compounds, rac‐(1′R,2R)‐tert‐butyl 2‐(1′‐hydroxyethyl)‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C17H20N2O6, (I), rac‐(1′S,2R)‐tert‐butyl 2‐[1′‐hydroxy‐3′‐(methoxycarbonyl)propyl]‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C20H24N2O8, (II), and rac‐(1′S,2R)‐tert‐butyl 2‐(4′‐bromo‐1′‐hydroxybutyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C13H20BrNO4, (III), are 5‐hydroxyalkyl derivatives of tert‐butyl 2‐oxo‐2,5‐dihydropyrrole‐1‐carboxylate. In all three compounds, the tert‐butoxycarbonyl (Boc) unit is orientated in the same manner with respect to the mean plane through the 2‐oxo‐2,5‐dihydro‐1H‐pyrrole ring. The hydroxyl substituent at one of the newly created chiral centres, which have relative R,R stereochemistry, is trans with respect to the oxo group of the pyrrole ring in (I), synthesized using acetaldehyde. When a larger aldehyde was used, as in compounds (II) and (III), the hydroxyl substituent was found to be cis with respect to the oxo group of the pyrrole ring. Here, the relative stereochemistry of the newly created chiral centres is R,S. In compound (I), O—H...O hydrogen bonding leads to an interesting hexagonal arrangement of symmetry‐related molecules. In (II) and (III), the hydroxyl groups are involved in bifurcated O—H...O hydrogen bonds, and centrosymmetric hydrogen‐bonded dimers are formed. The Mukaiyama crossed‐aldol‐type reaction was successful when using the 2‐nitrophenyl‐substituted hydroxypyrrole, or the unsubstituted hydroxypyrrole, and boron trifluoride diethyl ether as catalyst. The synthetic procedure leads to a syn configuration of the two newly created chiral centres in all three compounds.  相似文献   

18.
A simple and efficient enantioselective synthesis of chromene, (?)‐(R)‐cordiachromene ( 1 ), and (?)‐(R)‐dictyochromenol ( 2 ) has been accomplished. This convergent synthesis utilizes intramolecular SNAr reaction for the formation of chroman ring, and Seebach's method of ‘self‐reproduction of chirality’ should establish the (R)‐configuration of the C(2) side chain as key steps.  相似文献   

19.
As part of the structure‐activity relationship of the dopamine D2 and serotonin 5‐HT3 receptors antagonist 1, which is a clinical candidate with a broad antiemetic activity, the synthesis and dopamine D2 and serotonin 5‐HT3 receptors binding affinity of (R)‐5‐bromo‐N‐(1‐ethyl‐3‐methylhexahydro‐1,3‐diazin‐5‐yl)‐ and (R)‐5‐bromo‐N‐(1‐ethyl‐5‐methyloctahydro‐1,5‐diazocin‐3‐yl)‐2‐methoxy‐6‐methylaminopyridine‐3‐carboxam‐ides ( 2 and 3 ) are described. Treatment of 1‐ethyl‐2‐(p‐toluenesulfonyl)amino‐3‐methylaminopropane dihy‐drochloride ( 4a ) with paraformaldehyde and successive deprotection gave the 5‐aminohexahydro‐1,3‐diazine 6 in excellent yield. 3‐Amino‐1‐ethyl‐5‐methyloctahydro‐1,5‐diazocine ( 15 ) was prepared from 2‐(benzyloxycarbonyl)amino‐3‐[[N‐(tert‐butoxycarbonyl)‐N‐methyl]amino]‐1‐ethylaminopropane ( 9 ) through the intramolecular amidation of (R)‐3‐[N‐[(2‐benzyloxycarbonylamino‐3‐methylamino)propyl]‐N‐ethyl]aminopropionic acid trifluoroacetate ( 12 ), followed by lithium aluminum hydride reduction of the resulting 6‐oxo‐1‐ethyl‐5‐methyloctahydrodiazocine ( 13 ) in 41% yield. Reaction of the amines 6 and 15 with 5‐bromo‐2‐methoxy‐6‐methylaminopyridine‐3‐carboxylic acid furnished the desired 2 and 3 , which showed much less potent affinity for dopamine D2 receptors than 1 .  相似文献   

20.
The SnCl4‐catalyzed reaction of (?)‐thiofenchone (=1,3,3‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 10 ) with (R)‐2‐phenyloxirane ((R)‐ 11 ) in anhydrous CH2Cl2 at ?60° led to two spirocyclic, stereoisomeric 4‐phenyl‐1,3‐oxathiolanes 12 and 13 via a regioselective ring enlargement, in accordance with previously reported reactions of oxiranes with thioketones (Scheme 3). The structure and configuration of the major isomer 12 were determined by X‐ray crystallography. On the other hand, the reaction of 1‐methylpyrrolidine‐2‐thione ( 14a ) with (R)‐ 11 yielded stereoselectively (S)‐2‐phenylthiirane ((S)‐ 15 ) in 56% yield and 87–93% ee, together with 1‐methylpyrrolidin‐2‐one ( 14b ). This transformation occurs via an SN2‐type attack of the S‐atom at C(2) of the aryl‐substituted oxirane and, therefore, with inversion of the configuration (Scheme 4). The analogous reaction of 14a with (R)‐2‐{[(triphenylmethyl)oxy]methyl}oxirane ((R)‐ 16b ) led to the corresponding (R)‐configured thiirane (R)‐ 17b (Scheme 5); its structure and configuration were also determined by X‐ray crystallography. A mechanism via initial ring opening by attack at C(3) of the alkyl‐substituted oxirane, with retention of the configuration, and subsequent decomposition of the formed 1,3‐oxathiolane with inversion of the configuration is proposed (Scheme 5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号