首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elimination kinetics of ethyl N‐benzyl‐N‐cyclopropylcarbamate and ethyl diphenylcarbamate were investigated over the temperature range of 349.9–440.0°C and the pressure range of 31–106 Torr. These reactions have been found to be homogeneous, unimolecular, and obey a first‐order rate law. The products are ethylene, carbon monoxide, and the corresponding secondary amine. The rate coefficient is expressed by the following Arrhenius equations: For ethyl N‐benzyl‐N‐cyclopropylcarbamate log k1 (s?1) = (12.94 ± 0.09) ? (198.5 ± 0.9) kJ mol?1 (2.303RT)?1 For ethyl diphenylcarbamate log k1 (s?1) = (12.91 ± 0.18) ? (208.2 ± 2.4) kJ mol?1 (2.303RT)?1 The presence of phenyl and bulky groups at the nitrogen atom of the ethylcarbamate showed a decrease in the rate of elimination. Steric factor may be operating during the process of decomposition of these substrates. These reactions appear to undergo a semipolar six‐membered cyclic transition type of mechanism.© 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 67–71, 2002  相似文献   

2.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

3.
The gas‐phase elimination kinetics of ethyl 2‐furoate and 2‐ethyl 2‐thiophenecarboxylate was carried out in a static reaction system over the temperature range of 623.15–683.15 K (350–410°C) and pressure range of 30–113 Torr. The reactions proved to be homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are expressed by the following Arrhenius equations: ethyl 2‐furoate, log k1 (s?1) = (11.51 ± 0.17)–(185.6 ± 2.2) kJ mol?1 (2.303 RT)?1; ethyl 2‐thiophenecarboxylate, log k1 (s?1) = (11.59 ± 0.19)–(183.8 ± 2.4) kJ mol?1 (2.303 RT)?1. The elimination products are ethylene and the corresponding heteroaromatic 2‐carboxylic acid. However, as the reaction temperature increases, the intermediate heteroaromatic carboxylic acid products slowly decarboxylate to give the corresponding heteroaromatic furan and thiophene, respectively. The mechanisms of these reactions are suggested and described. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 145–152, 2009  相似文献   

4.
The gas phase elimination kinetics of the title compound was studied over the temperature range of 260.1–315.0°C and pressure range of 20–70 Torr. This elimination, in seasoned static reaction system and in the presence of at least fourfold of the free radical inhibitor toluene, is homogeneous, unimolecular and follows a first‐order rate law. The reaction yielded mainly benzaldehyde, CO, and HBr, and small amounts of benzylbromide and CO2. The observed rate coefficients are expressed by the following Arrhenius equations: For benzaldehyde formation: log k1 (s−1) = (12.23 ± 0.26) − (164.9 ± 2.7) kJ mol−1 (2.303 RT)−1 For benzylbromide formation: log k1 (s−1) = (13.82 ± 0.50) − (192.8 ± 5.5) kJ mol−1 (2.303 RT)−1 The mechanisms are believed to proceed through a semi‐polar five‐membered cyclic transition state for the benzaldehyde formation, while a four‐centered cyclic transition state for benzylbromide formation. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 725–728, 1999  相似文献   

5.
The gas‐phase elimination of phenyl chloroformate gives chlorobenzene, 2‐chlorophenol, CO2, and CO, whereasp‐tolyl chloroformate produces p‐chlorotoluene and 2‐chloro‐4‐methylphenol CO2 and CO. The kinetic determination of phenyl chloroformate (440–480oC, 60–110 Torr) and p‐tolyl chloroformate (430–480°C, 60–137 Torr) carried out in a deactivated static vessel, with the free radical inhibitor toluene always present, is homogeneous, unimolecular and follows a first‐order rate law. The rate coefficient is expressed by the following Arrhenius equations: Phenyl chloroformate: Formation of chlorobenzene, log kI = (14.85 ± 0.38) (260.4 ± 5.4) kJ mol?1 (2.303RT)?1; r = 0.9993 Formation of 2‐chlorophenol, log kII = (12.76 ± 0.40) – (237.4 ± 5.6) kJ mol?1(2.303RT)?1; r = 0.9993 p‐Tolyl chloroformate: Formation of p‐chlorotoluene: log kI = (14.35 ± 0.28) – (252.0 ± 1.5) kJ mol–1 (2.303RT)?1; r = 0.9993 Formation of 2‐chloro‐4‐methylphenol, log kII = (12.81 ± 0.16) – (222.2 ± 0.9) kJ mol?1(2.303RT)–1; r = 0.9995 The estimation of the kI values, which is the decarboxylation process in both substrates, suggests a mechanism involving an intramolecular nucleophilic displacement of the chlorine atom through a semipolar, concerted four‐membered cyclic transition state structure; whereas the kII values, the decarbonylation in both substrates, imply an unusual migration of the chlorine atom to the aromatic ring through a semipolar, concerted five‐membered cyclic transition state type of mechanism. The bond polarization of the C–Cl, in the sense Cδ+ … Clδ?, appears to be the rate‐determining step of these elimination reactions.  相似文献   

6.
The pyrolysis kinetics of several ethyl esters with polar substituents at the acyl carbon have been studied in the temperature range of 319.8–400.0°C and pressure range of 50.5–178.0 torr. These eliminations are homogeneous, unimolecular, and follow a first-order rate law. The rate coefficients are given by the Arrhenius equations: for ethyl glycolate, log k1 (s?1) = (12.75 ± 0.30) – (201.4 ± 3.8) kJ/mol/2.303RT; for ethyl cyanoacetate, log k1 (s?1) = (12.19 ± 0.18) – (191.8 ± 2.1) kJ/mol/2.303RT; for ethyl dichloroacetate, log k1 (s?1) = (12.62 ± 0.36) – (193.9 ± 4.3) kJ/mol/2.303RT; for ethyl trichloroacetate, log k1 (s?1) = (12.27 ± 0.09) – (185.1 ± 1.0) kJ/mol/2.303RT. The results of the present work together with those reported recently in the literature give an approximate linear correlation when plotting log k/k0 vs. σ* values (ρ* = 0.315 ± 0.004, r = 0.976, and intercept = 0.032 ± 0.006 at 400°C). This linear relationship indicates that the polar substituents affect the rate of elimination by electronic factors. The greater the electronegative nature of the polar substituent, the faster is the pyrolysis rate. The alkyl substituents yield, within experimental error, similar values in rates which makes difficult an adequate assessment of their real influence.  相似文献   

7.
The gas-phase elimination of several polar substituents at the α carbon of ethyl acetates has been studied in a static system over the temperature range of 310–410°C and the pressure range of 39–313 torr. These reactions are homogeneous in both clean and seasoned vessels, follow a first-order rate law, and are unimolecular. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: 2-acetoxypropionitrile, log k1 (s?1) = (12.88 ± 0.29) – (203.3 ± 2.6) kJ/mol (2.303RT)?1; for 3-acetoxy-2-butanone, log ±1(s?1) = (13.40 ± 0.20) – (202.8 ± 2.4) kJ/mol (2.303RT)?1; for 1,1,1-trichloro-2-acetoxypropane, log ?1 (s?1) = (12.12 ± 0.50) – (193.7 ± 6.0) kJ/mol (2.303RT)?; for methyl 2-acetoxypropionate, log ?1 (s?1) = (13.45 ± 0.05) – (209.5 ± 0.5) kJ/mol (2.303RT)?1; for 1-chloro-2-acetoxypropane, log ?1 (s?1) = (12.95 ± 0.15) – (197.5 ± 1.8) kJ/mol (2.303RT)?1; for 1-fluoro-2-acetoxypropane, log ?1 (s?1) = (12.83 ± 0.15)– (197.8 ± 1.8) kJ/mol (2.303RT)?1; for 1-dimethylamino-2-acetoxypropane, log ?1 (s?1) = (12.66 ± 0.22) –(185.9 ± 2.5) kJ/mol (2.303RT)?1; for 1-phenyl-2-acetoxypropane, log ?1 (s?1) = (12.53 ± 0.20) – (180.1 ± 2.3) kJ/mol (2.303RT)?1; and for 1-phenyl?3?acetoxybutane, log ?1 (s?1) = (12.33 ± 0.25) – (179.8 ± 2.9) kJ/mol (2.303RT)?1. The Cα? O bond polarization appears to be the rate-determining process in the transmition state of these pyrolysis reactions. Linear correlations of electron-releasing and electron-withdrawing groups along strong σ bonds have been projected and discussed. The present work may provide a general view on the effect of alkyl and polar substituents at the Cα? O bond in the gas-phase elimination of secondary acetates.  相似文献   

8.
The pyrolysis kinetics of primary, secondary, and tertiary β-hydroxy ketones have been studied in static seasoned vessels over the pressure range of 21–152 torr and the temperature range of 190°–260°C. These eliminations are homogeneous, unimolecular, and follow a first-order rate law. The rate coefficients are expressed by the following equations: for 1-hydroxy-3-butanone, log k1(s?1) = (12.18 ± 0.39) ? (150.0 ± 3.9) kJ mol?1 (2.303RT)?1; for 4-hydroxy-2-pentanone, log k1(s?1) = (11.64 ± 0.28) ? (142.1 ± 2.7) kJ mol?1 (2.303RT)?1; and for 4-hydroxy-4-methyl-2-pentanone, log k1(s?1) = (11.36 ± 0.52) ? (133.4 ± 4.9) kJ mol?1 (2.303RT)?1. The acid nature of the hydroxyl hydrogen is not determinant in rate enhancement, but important in assistance during elimination. However, methyl substitution at the hydroxyl carbon causes a small but significant increase in rates and, thus, appears to be the limiting factor in a retroaldol type of mechanism in these decompositions. © John Wiley & Sons, Inc.  相似文献   

9.
2‐Phenylethanol, racemic 1‐phenyl‐2‐propanol, and 2‐methyl‐1‐phenyl‐2‐propanol have been pyrolyzed in a static system over the temperature range 449.3–490.6°C and pressure range 65–198 torr. The decomposition reactions of these alcohols in seasoned vessels are homogeneous, unimolecular, and follow a first‐order rate law. The Arrhenius equations for the overall decomposition and partial rates of products formation were found as follows: for 2‐phenylethanol, overall rate log k1(s−1)=12.43−228.1 kJ mol−1 (2.303 RT)−1, toluene formation log k1(s−1)=12.97−249.2 kJ mol−1 (2.303 RT)−1, styrene formation log k1(s−1)=12.40−229.2 kJ mol−1(2.303 RT)−1, ethylbenzene formation log k1(s−1)=12.96−253.2 kJ mol−1(2.303 RT)−1; for 1‐phenyl‐2‐propanol, overall rate log k1(s−1)=13.03−233.5 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=13.04−240.1 kJ mol−1(2.303 RT)−1, unsaturated hydrocarbons+indene formation log k1(s−1)=12.19−224.3 kJ mol−1(2.303 RT)−1; for 2‐methyl‐1‐phenyl‐2‐propanol, overall rate log k1(s−1)=12.68−222.1 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=12.65−222.9 kJ mol−1(2.303 RT)−1, phenylpropenes formation log k1(s−1)=12.27−226.2 kJ mol−1(2.303 RT)−1. The overall decomposition rates of the 2‐hydroxyalkylbenzenes show a small but significant increase from primary to tertiary alcohol reactant. Two competitive eliminations are shown by each of the substrates: the dehydration process tends to decrease in relative importance from the primary to the tertiary alcohol substrate, while toluene formation increases. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 401–407, 1999  相似文献   

10.
The gas-phase elimination of ethyl 3-methylbutanoate and ethyl 3,3-dimethylbutanoate has been studied, in a static system, over the temperature range of 360–420°C and in the pressure range of 71–286 torr. The reactions are homogeneous, unimolecular, and follow a first-order rate law. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for ethyl 3-methylbutanoate, log k1 (s?1) = (12.70 ± 0.36) – (202.5 ± 4.4) kJ/mol/2.303RT, and for ethyl 3,3-dimethylbutanoate, log k1 (s?1) = (13.04 ± 0.08) – (207.1 ± 1.0) kJ/mol/2.303RT. Alkyl substituents at the acyl carbon of ethyl esters yield very close values in rates. Consequently it is rather difficult to offer some conclusion concerning the effect of these substituents.  相似文献   

11.
Ethyl 4-chlorobutyrate, which is reexamined, pyrolyzes at 350–410°C to ethylene, butyrolactone, and HCl. Under the reaction conditions, the primary product 4-chlorobutyric acid is responsible for the formation of γ-butyrolactone and HCl. In seasoned vessels, and in the presence of a free-radical inhibitor, the ester elimination is homogeneous, unimolecular, and follows a first-order rate law. For initial pressures from 69–147 Torr, the rate is given by the following Arrhenius expression: log k1(s?1) = (12.21 ± 0.26) ? (197.6 ± 3.3) kJ mol?1 (2.303RT)?1. The rates and product formation differ from the previous work on the chloroester pyrolysis. 4-Chlorobutyric acid, an intermediate product of the above substrate, was also pyrolyzed at 279–330°C with initial pressure within the range of 78–187 Torr. This reaction, which yields γ-butyrolactone and HCl, is also homogeneous, unimolecular, and obeys a first-order rate law. The rate coefficient, is given by the following Arrhenius equation: log k1(s?1) = (12.28 ± 0.41) ? (172.0 ± 4.6) kJ mol?1 (2.303RT)?1. The pyrolysis of ethyl chlorobutyrate proceeds by the normal mechanism of ester elimination. However, the intermediate 4-chlorobutyric acid was found to yield butyrolactone through anchimeric assistance of the COOH group and by an intimate ion pair-type of mechanism. Additional evidence of cyclic product and neighboring group participation is described and presented.  相似文献   

12.
The gas-phase eliminations of several tert-butyl esters, in a static system and in vessels seasoned with allyl bromide, have been studied in the temperature range of 171.5–280.1°C and the pressure range of 23–98 torr. The rate coefficients for the homogeneous unimolecular elimination of these esters are given by the following Arrhenius equations: for tert-butyl pivalate, log k1(s?1) = (13.44 ± 0.30) ? (169.1 ± 3.1) kJ · mol?1 (2.303RT)?1; for tert-butyl trichloroacetate, log k1(s?1) = (12.41 ± 0.08) ? (141.1 ± 0.7) kJ · mol?1 (2.303RT)?1; and for tert-butyl cyanoacetate log k1(s?1) = (11.31 ± 0.44) ? (137.8 ± 4.1) kJ · mol?1 (2.303RT)?1. The data of this work together with those reported in the literature yield a good linear relationship when plotting log k/k0 vs. σ* values (ρ* = 0.635, correlation coefficient r = 0.972, and intercept = 0.048 at 250°C). The positive ρ* value suggests that the movement of negative charge to the acyl carbon in the transition state is rate determining. The present results along with previous investigations ratify the generalization that electron-withdrawing substituents at the acyl side of ethyl, isopropyl, and tert-butyl esters enhance the elimination rates, while electron-releasing groups tend to reduce them. The negative nature of the acyl carbon and the polarity in the transition state increases slightly from primary to tertiary esters.  相似文献   

13.
The gas‐phase kinetics and mechanism of the homogeneous elimination of CO from butyraldehyde in the presence of HCl has been experimentally studied. The reaction is homogeneous and follows the second‐order kinetics with the following rate expression: log k 1 (s−1 L mol−1) = (13.27 ± 0.36) – (173.2 ± 4.4) kJ mol−1(2.303RT )−1. Experimental data suggested a concerted four‐membered cyclic transition state type of mechanism. The first and rate‐determining step occurs through a four‐membered cyclic transition state to produce propane and formyl chloride. The formyl chloride intermediate rapidly decomposes to CO and HCl gases.  相似文献   

14.
The kinetics of the gas‐phase elimination kinetics of CO2 from furoic acid was determined in a static system over the temperature range 415–455°C and pressure range 20–50 Torr. The products are furan and carbon dioxide. The reaction, which is carried out in vessels seasoned with allyl bromide and in the presence of the free‐radical suppressor toluene and/or propene, is homogeneous, unimolecular, and follows a first‐order rate law. The observed rate coefficient is expressed by the following Arrhenius equation: log k1(s?1) = (13.28 ± 0.16) ? (220.5 ± 2.1) kJ mol?1 (2.303 RT)?1. Theoretical studies carried out at the B3LYP/6‐31++G** computational level suggest two possible mechanisms according to the kinetics and thermodynamic parameters calculated compared with experimental values. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 298–306, 2007  相似文献   

15.
The gas phase elimination kinetics of 2‐bromopropene was studied over the temperature range of 571–654 K and pressure range of 12–46 Torr using the seasoned static reaction system. Propyne was the only olefinic product formed and accounted for >98% of the reaction. This product was formed by homogeneous, unimolecular pathways with high‐pressure first‐order rate constant k given by the equation k = 1013.47 ± 0.6 exp?208.2 ± 6.7 (kJ mol?1)/RT. The error limits are 95% certainty limits. The observed Arrhenius parameters are consistent with the four centered activated complex. The presence of methyl group on α‐carbon lowers the activation energy by 41 kJ mol?1. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 1–5, 2007  相似文献   

16.
Elimination kinetics of 2-bromohexane and 2-bromo-4-methylpentane in the gas phase were examined over the temperature range of 310–360°C and pressure range of 46–213 torr. The reactionsin seasoned, static reaction vessels, and in the presence of the free radical inhibitor cyclohexene, are homogeneous, unimolecular, and follow first order rate laws. The overall rate coefficients are described by the following Arrhenius equations: For 2-bromohexane, log??1(s?1) = (13.08 ± 0.70) ? (185.7 ± 8.2) kJ mol?1 (2.303RT)?1; for 2-bromo-4-methylpentane, log??1(s?1) = (13.08 ± 0.33) ? (183.4 ± 3.8) kJ mol?1 (2.303RT)?1. The electron releasing effect of alkyl groups influences the overall elimination rates. The olefin products isomerize in the presence of HBr gas until an equilibrium mixture is reached.  相似文献   

17.
The elimination kinetics of the title compounds were carried out in a static system over the temperature range of 290–330°C and pressure range of 29.5–124 torr. The reactions, carried out in seasoned vessels with allyl bromide, obey first-order rate law, are homogeneous and unimolecular. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for 3-buten-1-methanesulphonate, log k1(s?1) = (12.95 ± 0.53) ? (175.3 ± 5.9)kJ mol?1(2.303RT)?1; and for 3-methyl-3-buten-1-methanesulphonate, log k1(s?1) = (12.98 ± 0.40) ? (174.7 ± 4.5)kJ mol?1(2.303RT)?1. The olefinic double bond appears to assist in the rate of pyrolysis. The mechanism is described in terms of an intimate ion-pair intermediate. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
The kinetics of the gas phase pyrolyses of methyl 2-bromopropionate and 2-bromopropionic acid were studied in a seasoned, static reaction vessel and under maximum inhibition of the free radical suppressor toluene. The working temperature and pressure range was 310–430°C and 26.5–201.5 torr, respectively. The reactions proved to be homogeneous, unimolecular, and obeys a first-order rate law. The rate coefficients are expressible by the following equations: for methyl 2-bromopropionate, log k1(s?1) = (13.10 ± 0.34) ? (211.4 ± 4.4)kJ mol?1(2.303RT)?1; for 2-bromopropionic acid, log k1(s?1) = (12.41 ± 0.29) ? (180.3 ± 3.4)kJ mol?1(2.303RT)?1. The bromoacid yields acetaldehyde, CO and HBr. Because of this result, the mechanism is believed to proceed via a polar five-membered cyclic transition state.  相似文献   

19.
The dynamic behavior of the N,N,N′,N′‐tetramethylethylenediamine (tmeda) ligand has been studied in solid lithium‐fluorenide(tmeda) ( 3 ) and lithium‐benzo[b]fluorenide(tmeda) ( 4 ) using CP/MAS solid‐state 13C‐ and 15N‐NMR spectroscopy. It is shown that, in the ground state, the tmeda ligand is oriented parallel to the long molecular axis of the fluorenide and benzo[b]fluorenide systems. At low temperature (<250 K), the 13C‐NMR spectrum exhibits two MeN signals. A dynamic process, assigned to a 180° rotation of the five‐membered metallacycle (π‐flip), leads at elevated temperatures to coalescence of these signals. Line‐shape calculations yield ΔH?=42.7 kJ mol?1, ΔS?=?5.3 J mol?1 K?1, and =44.3 kJ mol?1 for 3 , and ΔH?=36.8 kJ mol?1, ΔS?=?17.7 J mol?1 K?1, and =42.1 kJ mol?1 for 4 , respectively. A second dynamic process, assigned to ring inversion of the tmeda ligand, was detected from the temperature dependence of T1ρ, the 13C spin‐lattice relaxation time in the rotating frame, and led to ΔH?=24.8 kJ mol?1, ΔS?=?49.2 J mol?1 K?1, and =39.5 kJ mol?1 for 3 , and ΔH?=18.2 kJ mol?1, ΔS?=?65.3 J mol?1 K?1, and =37.7 kJ mol?1 for 4 , respectively. For (D12)‐ 3 , the rotation of the CD3 groups has also been studied, and a barrier Ea of 14.1 kJ mol?1 was found.  相似文献   

20.
The biomimic reactions of N‐phosphoryl amino acids, which involved intramolecular penta‐coordinate phosphoric‐carboxylic mixed anhydrides, are very important in the study of many biochemical processes. The reactivity difference between the α‐COOH group and β‐COOH in phosphoryl amino acids was studied by experiments and theoretical calculations. It was found that the α‐COOH group, and not β‐COOH, was involved in the ester exchange on phosphorus in experiment. From MNDO calculations, the energy of the penta‐coordinate phosphoric intermediate containing five‐member ring from α‐COOH was 35 kJ/mol lower than that of the six‐member one from β‐COOH. This result was in agreement with that predicted by HF/6‐31G** and B3LYP/6‐31G** calculations. Theoretical three‐dimensional potential energy surface for the intermediates predicted that the transition states 4 and 5 involving α‐COOH or β‐COOH group had energy barriers of ΔE=175.8 kJ?mol?1 and 210.4 kJ?mol?1, respectively. So the α‐COOH could be differentiated from β‐COOH intramolecularly in aspartic acids by N‐phosphorylation. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 41–51, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号