首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidation of some derivatives of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐one have been investigated in detail using lead(IV) acetate in acetic acid under reflux conditions and periodic acid in aqueous ethanol at room temperature. We realized that during the first 5–15 minutes of the oxidation reactions in lead(IV) acetate/acetic acid system, 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives have been synthesized chemo selectively, while, if the reaction mixtures stirred for additional 3 hours, the main products would be 2‐(2‐(Methoxycarbonyl)‐3‐oxo‐2,3‐dihydrobenzofuran‐2‐yl)benzoic acids. Moreover, room temperature oxidation of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐ones by periodic acid (H5IO6), leads to the formation of 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives in good to excellent yields.  相似文献   

2.
3‐(Bromoacetyl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one was synthesized by the reaction of dehydroacetic acid (DHAA) with bromine in glacial acetic acid. Novel heterocyclic products were synthesized from the reaction of bromo‐DHAA with alkanediamines, phenylhydrazines, ortho‐phenylenediamines, and ortho‐aminobenzenethiol. The obtained new products 3‐(2‐N‐substituted‐acetyl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐ones, 4‐hydroxy‐3‐[1‐hydroxy‐2‐(2‐phenylhydrazinyl)vinyl]‐6‐methyl‐2H‐pyran‐2‐one, 1‐(2,4‐dinitrophenyl)‐7‐methyl‐2,3‐dihydro‐1H‐pyrano[4,3‐c]pyridazine‐4,5‐dione, 3‐(3,4‐dihydroquinoxalin‐2‐yl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one/3‐(3,4‐dihydroquinoxalin‐2‐yl)‐6‐methyl‐2H‐pyran‐2,4(3H)‐dione, 6‐methyl‐3‐(3,4‐dihydroquinoxalin‐2‐yl)‐2H‐pyran‐2,4(3H)‐dione, and (E)‐3‐(2H‐benzo[b][1,4]thiazin‐3(4H)‐ylidene)‐6‐methyl‐2H‐pyran‐2,4(3H)‐dione were fully characterized by IR, 1H and 13C NMR, and mass spectra. J. Heterocyclic Chem., 2011.  相似文献   

3.
Alkyl 2‐[2‐ethoxycarbonyl‐2‐(2‐pyridinyl)ethenyl]amino‐3‐dimethylaminopropenoates 3 and 4 were transformed with C‐and N‐nucleophiles into β‐heteroaryl‐α,β‐didehydro‐α‐amino acid derivatives 13 ‐ 16 , substituted 3‐amino‐4H‐quinolizin‐4‐one 17, 2H,5H‐benzo[b]pyran‐2,5‐dione 18 and 19 , 2H,5H‐pyrano[4,3‐b]pyran‐2,5‐dione 20 , 2H,5H‐pyrano[3,2‐c]benzo[b]pyran‐2,5‐dione 21 , 2H‐1‐benzopyran‐2‐one 22 and 24 , pyrido[l,2‐a]pyrimidin‐4‐one 31–34 and 39 derivatives, and N‐heteroaryl‐1H‐imidazole‐4‐carboxylates 37 and 38 .  相似文献   

4.
A series of 6′‐chloro‐1′,1′‐dioxo‐2′H‐spiro[benzo[d][1,3,7]oxadiazocine‐4,3′‐(1,4,2‐benzodithiazine)]‐2,6(1H,5H)‐dione derivatives 2a , 2b and 3a , 3b have been synthesized starting from 3‐aminobenzodithiazines 1a , 1b and isatoic anhydride. Subsequent reactions of 2a with 3‐chlorophenyl isocyanate gave condensation products 4 and 5 . Compound 2a was also converted into 3‐(2‐aminobenzamido)‐6‐chloro‐7‐methyl‐1,1‐dioxo‐1,4,2‐benzodithiazine derivatives 6 , 7 , 8 , 9 , 10 . The mechanisms of the reactions are discussed.  相似文献   

5.
Three‐component reactions of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione with malononitrile, or ethyl cyanoacetate, and cyclic six‐membered or a five‐membered 1,3‐diketone, produce spiro[4H‐pyran‐3,3′‐oxindoles].  相似文献   

6.
The tricyclic isatin, 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione, undergoes three‐component, one‐pot reactions with 1‐aryl‐3‐methylpyrazole‐5‐amines and cyclohexane‐1,3‐diones producing hexacyclic spiro products, hexahydrospiro[pyrazolo[3,4‐b]quinoline‐4,1‐pyrrolo[3,2,1‐ij]quinoline‐2′,5(1H,4′H)‐diones]. Comparable spiro condensation products are also obtained using 4‐hydroxy‐2H‐1‐benzopyran‐2‐one in place of cyclohexane‐1,3‐diones.  相似文献   

7.
This paper presents the synthesis of a series of 5,6‐dihydro‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ring system derivatives with a [1,2,3]triazole ring bonded in position 2. The procedure is based on cycloaddition of substituted alkyl azides to the terminal triple bond of 5,6‐dihydro‐2‐ethynyl‐9‐methyl‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 4 ). This cycloaddition produced two regioisomers ?5,6‐dihydro‐9‐methyl‐2‐(1‐substituted‐1H‐[1,2,3]triazol‐5‐yl)‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 7 ) and 2‐(1‐substituted‐1H‐[1,2,3]triazol‐4‐yl) derivative 8 . The required 2‐ethynyl deriva tive 4 was obtained from the starting 2‐unsubstituted compound 1 by bromination to yield the 2‐bromo derivative 2 , which was converted by Sonogashira reaction to trimethylsilylethyne 3 and finally, the protective trimethylsilyl group was removed by hydrolysis.  相似文献   

8.
Two efficient and diastereoselective procedures for the synthesis of (Z)‐6‐(2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐diones by aldol‐crotonic condensation of 1,3‐dimethyl‐3a,9a‐diphenyl‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐dione with isatins under acidic or basic catalysis are reported. Isomerization in (Z)‐7‐(1‐allyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐1,3‐dimethyl‐3a,9a‐diphenyl‐1,3a,4,9a‐tetrahydroimidazo[4,5‐e]thiazolo[2,3‐c]‐1,2,4‐triazin‐2,8(3H,7H)‐dione was observed under basic conditions.  相似文献   

9.
A three‐component reaction of isatin, 3‐methyl‐1‐phenyl‐1H‐pyrazol‐5‐amine, and piperidine‐2,4‐dione was treated in ionic liquids catalyzed by TsOH and provided an efficient and green method for the synthesis of spiro[indoline‐3,4′‐pyrazolo[3, 4‐b][1,6]naphthyridine]‐2,5′(1′H)‐dione derivatives in high yields.  相似文献   

10.
When 2,3‐dichloro‐1,4‐naphthoquinone (DCHNQ) ( 1 ) is allowed to react with 1‐phenylbiguanide (PBG) ( 2 ), 4‐chloro‐2,5‐dihydro‐2,5‐dioxonaphtho[1,2‐d]imidazole‐3‐carboxylic acid phenyl amide ( 4 ), 6‐chloro‐8‐phenylamino‐9H‐7,9,11‐triaza‐cyclohepta[a]naphthalene‐5,10‐dione ( 5 ) and 4‐dimethyl‐amino‐5,10‐dioxo‐2‐phenylimino‐5,10‐dihydro‐2H‐benzo[g]quinazoline‐1‐carboxylic acid amide ( 6 ) were obtained. While on reacting 1 with 2‐guanidinebenzimidazole (GBI) ( 3 ) the products are 3‐(1H‐benzoimidazol‐2‐yl)‐4‐chloro‐3H‐naphtho[1,2‐d]imidazole‐2,5‐dione ( 7 ) and 3‐[3‐(1H‐benzoimidazol‐2‐yl)‐ureido]‐1,4‐dioxo‐1,4‐dihydronaphthalene‐2‐carboxylic acid dimethylamide ( 8 ).  相似文献   

11.
An efficient and green reactions of isatins, 3‐amine‐1H‐pyrazole (5‐methyl‐1H‐pyrazol‐3‐amine) and 1,3‐diketone in aqueous medium for the synthesis of novel 1′,7′,8′,9′‐tetrahydrospiro[indoline‐3,4′‐pyrazolo[3,4‐b]quinoline]‐2,5′(6′H)‐dione derivatives were reported in this research. The advantages of this reaction are simple operation, mild‐reaction conditions, wide scope substrate, high yields, and friendly environment. The products were confirmed by IR, 1H NMR, 13C NMR, and HRMS.  相似文献   

12.
The reactions of the 2,3‐dihydro‐1H‐furan‐2,3‐dione 1 with Schiff bases 2a‐f at 60–70°C furnish the corresponding 2,3‐dihydro‐1H‐pyrole‐2,3‐diones 3a‐f . The heating of 3a‐d afforded the corresponding 4‐methoxybenzoyl(N‐arylimidoyl)k:etenes 4a‐d as intermediates which undergo a very facile cyclization to quinoline‐4‐ones 5a‐d . According to our PM3 calculations, fragmentation of 4‐formyl‐2,3‐dihydro‐1H‐pyrole‐2,3‐dione and 1,4‐cyclization of formyl(N‐phenylimidoyl)k:etene IN1 to azetin‐2‐one IN2 and oxe‐tone IN3 are pseudopericyclic reactions with two orbital connections, proceed via planar transition structures. Due to to the possibility of syn and anti conformations of the imine phenyl, there are eight E/Z‐iso‐mers of IN1 . In addition, we have also calculated reaction mechanism of formation of quinoline‐4‐ones by the PM3 method.  相似文献   

13.
The reaction of 2‐amino‐4,5‐dimethyl‐ thiophene‐3‐carboxamide with iso(and isothio) cyanates for the synthesis of thieno[2,3‐d]pyrimidines has been investigated. The reactions under microwave irradiation in the presence of N,N‐dimethyl acetamide as solvent gave 5,6‐dimethylthieno[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, 5,6‐dimethyl‐2‐thioxo‐2,3‐dihy‐ drothieno[2,3‐d]pyrimidin‐4(1H)‐one, and 2‐aryla‐ mino‐5,6‐dimethylthieno[2,3‐d]pyrimidin‐4(3H)‐one derivatives. These reactions probably proceed through intermediates 4,5‐dimethyl‐2‐substitutedcarbamoth‐ ioylaminothiophene‐3‐carboxamides. Two of these intermediates were isolated. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:346–349, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20557  相似文献   

14.
The cycloaddition between N‐protected 3‐{1‐[(trimethylsilyl)oxy]ethenyl}‐1H‐indoles and substituted maleimides (= 1H‐pyrrole‐2,5‐diones) yielded substituted pyrrolo[3,4‐a]carbazole derivatives bearing an additional succinimide (= pyrrolidine‐2,5‐dione) moiety either at C(5a) or C(10b) depending on the type of the protection group at the indole N‐atom. Derivatives substituted at C(10b) were isolated when the protection group, Me3Si or Boc (tBuOCO), was eliminated during the reaction (Schemes 2 and 3), whereas a substitution at C(5a) was observed when an electron‐withdrawing group, Tos (4‐MeC6H4SO2) or pivaloyl (Me3CCO), was not eliminated (Scheme 1). Complex results were found in reactions between 1‐(trimethylsilyl)‐3‐{1‐[(trimethylsilyl)oxy]ethenyl}‐1H‐indole, in contrast to formerly reported results (Scheme 3). Some derivatives of 1H,5H‐[1,2,4]triazolo[1′,2 : 1,2]pyridazino[3,4‐b]indole‐1,3(2H)‐dione were obtained from reactions with 4‐phenyl‐3H‐1,2,4‐triazole‐3,5(4H)‐dione (Scheme 2). All structures were established by spectroscopic data, by calculations, and one representative structure was confirmed by an X‐ray crystallographic analysis (Fig.). Finally, the formation of the different structure types was discussed, and compared with similar reactions reported in the literature.  相似文献   

15.
A new four‐component synthesis of spiro[4H‐indeno[1,2‐b]pyridine‐4,3′‐[3H]indoles] and spiro[acenaphthylene‐1(2H),4′‐[4H‐indeno[1,2‐b]pyridines] by the reaction of indane‐1,3‐dione, 1,3‐dicarbonyl compounds, isatins (=1H‐indole‐2,3‐diones) or acenaphthylene‐1,2‐dione, and AcONH4 in refluxing toluene in the presence of a catalytic amount of pyridine is reported.  相似文献   

16.
Under mild reaction conditions, the thiocyanato group is selectively transferred from 1‐methyl‐3‐phenyl‐3‐thiocyanato‐1H,3H‐quinoline‐2,4‐dione ( 3 ) to some nucleophiles. Aliphatic primary and secondary amines are converted to S‐cyanothiohydroxylamines, anilines afford p‐thiocyanatoanilines, Wittig reagent is thiocyanated in α‐position, and thiols are oxidized to disulfides.  相似文献   

17.
《中国化学》2018,36(2):112-118
Quinazoline‐2,4(1H,3H)‐diones are core structural subunits frequently found in many biologically important compounds. The reaction of 2‐​aminobenzonitrile and CO2, which was frequently studied, only provided N3‐unsubstituted quinazoline‐2,4(1H,3H)‐dione compounds. Herein we report palladium‐catalyzed cyclization reactions of o‐haloanilines, CO2 and isocyanides to prepare N3‐substituted quinazoline‐2,4(1H,3H)‐diones. Electron‐rich o‐bromoanilines participated in the cyclization reaction using Cs2CO3 at high temperature, and electron‐deficient o‐bromoaniline or o‐iodoaniline substrates conducted the reaction using CsF as base to deliver corresponding quinazoline‐2,4(1H,3H)‐dione products in good yields.  相似文献   

18.
Aldol condensation of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij ]quinoline‐1,2‐dione with aryl methyl ketones generates 3‐(aroylmethylidene)oxindoles, which react with hydrazine to generate tricyclic spiro[3H‐pyrazole‐3,3′‐oxindoles].  相似文献   

19.
Several quinazoline‐2(1H),4(3H)‐dione derivatives were synthesized from pyrimidine‐2(1H),4(3H)‐dione derivative.  相似文献   

20.
Knoevenagel condensation of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione 3 with aryl cyanomethyl ketones 9 generates 3‐(aroyl(cyano)methylidene)oxindoles 10 that react with cyclic 1,3‐diketones 11 to generate polycyclic hemiacetal spiro[4H‐2,3‐dihydropyran‐3,3′‐oxindoles] 13 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号