首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 880 毫秒
1.
We show that if G is a 4‐connected claw‐free graph in which every induced hourglass subgraph S contains two non‐adjacent vertices with a common neighbor outside S, then G is hamiltonian. This extends the fact that 4‐connected claw‐free, hourglass‐free graphs are hamiltonian, thus proving a broader special case of a conjecture by Matthews and Sumner. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 267–276, 2005  相似文献   

2.
The topological approach to the study of infinite graphs of Diestel and KÜhn has enabled several results on Hamilton cycles in finite graphs to be extended to locally finite graphs. We consider the result that the line graph of a finite 4‐edge‐connected graph is hamiltonian. We prove a weaker version of this result for infinite graphs: The line graph of locally finite, 6‐edge‐connected graph with a finite number of ends, each of which is thin, is hamiltonian.  相似文献   

3.
We introduce a closure concept that turns a claw‐free graph into the line graph of a multigraph while preserving its (non‐)Hamilton‐connectedness. As an application, we show that every 7‐connected claw‐free graph is Hamilton‐connected, and we show that the well‐known conjecture by Matthews and Sumner (every 4‐connected claw‐free graph is hamiltonian) is equivalent with the statement that every 4‐connected claw‐free graph is Hamilton‐connected. Finally, we show a natural way to avoid the non‐uniqueness of a preimage of a line graph of a multigraph, and we prove that the closure operation is, in a sense, best possible. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:152‐173, 2011  相似文献   

4.
A graph G is 1‐Hamilton‐connected if is Hamilton‐connected for every vertex . In the article, we introduce a closure concept for 1‐Hamilton‐connectedness in claw‐free graphs. If is a (new) closure of a claw‐free graph G, then is 1‐Hamilton‐connected if and only if G is 1‐Hamilton‐connected, is the line graph of a multigraph, and for some , is the line graph of a multigraph with at most two triangles or at most one double edge. As applications, we prove that Thomassen's Conjecture (every 4‐connected line graph is hamiltonian) is equivalent to the statement that every 4‐connected claw‐free graph is 1‐Hamilton‐connected, and we present results showing that every 5‐connected claw‐free graph with minimum degree at least 6 is 1‐Hamilton‐connected and that every 4‐connected claw‐free and hourglass‐free graph is 1‐Hamilton‐connected.  相似文献   

5.
We show that every 3‐connected claw‐free graph which contains no induced copy of P11 is hamiltonian. Since there exist non‐hamiltonian 3‐connected claw‐free graphs without induced copies of P12 this result is, in a way, best possible. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 111–121, 2004  相似文献   

6.
《Journal of Graph Theory》2018,88(4):631-640
The 3‐Decomposition Conjecture states that every connected cubic graph can be decomposed into a spanning tree, a 2‐regular subgraph and a matching. We show that this conjecture holds for the class of connected plane cubic graphs.  相似文献   

7.
By Petersen's theorem, a bridgeless cubic graph has a 2‐factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3‐edge‐connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that this is in some sense best possible by constructing an infinite family of 3‐edge‐connected graphs in which every spanning even subgraph has a 5‐cycle as a component. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 37–47, 2009  相似文献   

8.
It is proven that if G is a 3‐connected claw‐free graph which is also H1‐free (where H1 consists of two disjoint triangles connected by an edge), then G is hamiltonian‐connected. Also, examples will be described that determine a finite family of graphs such that if a 3‐connected graph being claw‐free and L‐free implies G is hamiltonian‐connected, then L . © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 104–119, 2002  相似文献   

9.
The toughness of a (noncomplete) graph G is the minimum value of t for which there is a vertex cut A whose removal yields components. Determining toughness is an NP‐hard problem for general input graphs. The toughness conjecture of Chvátal, which states that there exists a constant t such that every graph on at least three vertices with toughness at least t is hamiltonian, is still open for general graphs. We extend some known toughness results for split graphs to the more general class of 2K2‐free graphs, that is, graphs that do not contain two vertex‐disjoint edges as an induced subgraph. We prove that the problem of determining toughness is polynomially solvable and that Chvátal's toughness conjecture is true for 2K2‐free graphs.  相似文献   

10.
For an integer s ≥ 0, a graph G is s‐hamiltonian if for any vertex subset with |S| ≤ s, G ‐ S is hamiltonian. It is well known that if a graph G is s‐hamiltonian, then G must be (s+2)‐connected. The converse is not true, as there exist arbitrarily highly connected nonhamiltonian graphs. But for line graphs, we prove that when s ≥ 5, a line graph is s‐hamiltonian if and only if it is (s+2)‐connected.  相似文献   

11.
《Discrete Mathematics》2020,343(6):111839
The 3-Decomposition Conjecture states that every connected cubic graph can be decomposed into a spanning tree, a 2-regular subgraph and a matching. We prove that this conjecture is true for connected cubic graphs with a 2-factor consisting of three cycles.  相似文献   

12.
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

13.
In this article, we prove that a line graph with minimum degree δ≥7 has a spanning subgraph in which every component is a clique of order at least three. This implies that if G is a line graph with δ≥7, then for any independent set S there is a 2‐factor of G such that each cycle contains at most one vertex of S. This supports the conjecture that δ≥5 is sufficient to imply the existence of such a 2‐factor in the larger class of claw‐free graphs. It is also shown that if G is a claw‐free graph of order n and independence number α with δ≥2n/α?2 and n≥3α3/2, then for any maximum independent set S, G has a 2‐factor with α cycles such that each cycle contains one vertex of S. This is in support of a conjecture that δ≥n/α≥5 is sufficient to imply the existence of a 2‐factor with α cycles, each containing one vertex of a maximum independent set. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 251–263, 2012  相似文献   

14.
A graph of order n is p ‐factor‐critical, where p is an integer of the same parity as n, if the removal of any set of p vertices results in a graph with a perfect matching. 1‐factor‐critical graphs and 2‐factor‐critical graphs are factor‐critical graphs and bicritical graphs, respectively. It is well known that every connected vertex‐transitive graph of odd order is factor‐critical and every connected nonbipartite vertex‐transitive graph of even order is bicritical. In this article, we show that a simple connected vertex‐transitive graph of odd order at least five is 3‐factor‐critical if and only if it is not a cycle.  相似文献   

15.
Thomassen [Reflections on graph theory, J. Graph Theory 10 (1986) 309-324] conjectured that every 4-connected line graph is hamiltonian. An hourglass is a graph isomorphic to K5-E(C4), where C4 is a cycle of length 4 in K5. In Broersma et al. [On factors of 4-connected claw-free graphs, J. Graph Theory 37 (2001) 125-136], it is shown that every 4-connected line graph without an induced subgraph isomorphic to the hourglass is hamiltonian connected. In this note, we prove that every 3-connected, essentially 4-connected hourglass free line graph, is hamiltonian connected.  相似文献   

16.
任韩和李刚在图的最大亏格综述一文"Survey of maximum genus of graphs" [J East China NormUniv Natur Sci, Sep. 2010, No. 5, 1-13] 中,全面地阐述了近30 年来关于图的最大亏格及其相关问题所取得的进展,并提出了如下两个猜想:
猜想1 设G 为简单连通图, 且G 的每条边含在一个三角形K3 中, 则G 是上可嵌入的.
猜想2 设c 为任意的正数, 则存在一个自然数N(c), 使得对每一个图G, 若G 的点数n ≥ N(c), 且最小度δ(G) ≥ cn, 则G 是上可嵌入的.
本文的主要工作是否定上述两个猜想, 同时探讨上述猜想成立的条件且得了一些新结果, 并提出有关进一步研究的问题.  相似文献   

17.
We investigate graphs G such that the line graph L(G) is hamiltonian connected if and only if L(G) is 3-connected, and prove that if each 3-edge-cut contains an edge lying in a short cycle of G, then L(G) has the above mentioned property. Our result extends Kriesell’s recent result in [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected line graph of a claw free graph is hamiltonian connected. Another application of our main result shows that if L(G) does not have an hourglass (a graph isomorphic to K5E(C4), where C4 is an cycle of length 4 in K5) as an induced subgraph, and if every 3-cut of L(G) is not independent, then L(G) is hamiltonian connected if and only if κ(L(G))≥3, which extends a recent result by Kriesell [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected hourglass free line graph is hamiltonian connected.  相似文献   

18.
A triangular grid graph is a finite induced subgraph of the infinite graph associated with the two-dimensional triangular grid. In 2000, Reay and Zamfirescu showed that all 2-connected, linearly-convex triangular grid graphs (with the exception of one of them) are hamiltonian. The only exception is a graph D which is the linearly-convex hull of the Star of David. We extend this result to a wider class of locally connected triangular grid graphs. Namely, we prove that all connected, locally connected triangular grid graphs (with the same exception of graph D) are hamiltonian. Moreover, we present a sufficient condition for a connected graph to be fully cycle extendable. We also show that the problem Hamiltonian Cycle is NP-complete for triangular grid graphs.  相似文献   

19.
A graph G is 1‐Hamilton‐connected if G?x is Hamilton‐connected for every xV(G), and G is 2‐edge‐Hamilton‐connected if the graph G+ X has a hamiltonian cycle containing all edges of X for any X?E+(G) = {xy| x, yV(G)} with 1≤|X|≤2. We prove that Thomassen's conjecture (every 4‐connected line graph is hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent to the statements that every 4‐connected line graph is 1‐Hamilton‐connected and/or 2‐edge‐Hamilton‐connected. As a corollary, we obtain that Thomassen's conjecture implies polynomiality of both 1‐Hamilton‐connectedness and 2‐edge‐Hamilton‐connectedness in line graphs. Consequently, proving that 1‐Hamilton‐connectedness is NP‐complete in line graphs would disprove Thomassen's conjecture, unless P = NP. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 241–250, 2012  相似文献   

20.
A parity subgraph of a graph is a spanning subgraph such that the degrees of each vertex have the same parity in both the subgraph and the original graph. Known results include that every graph has an odd number of minimal parity subgraphs. Define a disparity subgraph to be a spanning subgraph such that each vertex has degrees of opposite parities in the subgraph and the original graph. (Only graphs with all even-order components can have disparity subgraphs). Every even-order spanning tree contains both a unique parity subgraph and a unique disparity subgraph. Moreover, every minimal disparity subgraph is shown to be paired by sharing a spanning tree with an odd number of minimal parity subgraphs, and every minimal parity subgraph is similarly paired with either one or an even number of minimal disparity subgraphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号