首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A new binucleating macrocyclic ligand 2,6‐bis (1,4,7,10‐tetraazacyclododecan‐10‐ylmethyl) methoxy‐benzene (L) and its binuclear copper (II) complex, [Cu2LBr2] (CIO4 )2 · 3H2O (1), was prepared and the structure was determined by X‐ray crystallography. Complex 1 crystallizes in monoclinic crystal system, P21/n space group with a = 0.8206(3), b =2.0892(8), c = 2.3053(7) mn, β = 95.83(2)°, V = 3.932 nm3, Mr=1017.57, Z = 4, Dc =1.692 g/cm3, and R= 0.0489, Rw 0.0552 for 6571 observed reflections with I ≥ 2σ (1). Both of the copper(II) centers are coordinated by four amine nitrogen donors of cyclen subunits and a bromide anion, and each copper(II) ion is in a square‐pyramidal coordination environment. Variable temperature magnetic susceptibility studies indicate that there exists weak intramolecular antiferro‐magnetic coupling ( ?2J = 2.06 cm?1) between the two copper (II) centers.  相似文献   

2.
Three new μ‐oxamido‐bridged heterodinuclear copper (II)‐chromium (III) complexes formulated [Cu(Me2oxpn)Cr‐(L)2](NO3)3, where Me2oxpn denotes N,N'‐bis(3‐amino‐2, 2‐dimethylpropyl)oxamido dianion and L represents 5‐methyl‐1,10‐phenanthroline (Mephen), 4,7‐diphenyl‐1,10‐phenanthroline (Ph2phen) or 2,2′‐bipyridine (bpy), have been synthesized and characterized by elemental analyses, IR and electronic spectral studies, magnetic moments of room‐temperature and molar conductivity measurements. It is proposed that these complexes have oxamido‐bridged structures consisting of planar copper (II) and octahedral chromium (III) ions. The variable temperature magnetic susceptibilities (4.2–300 K) of complexes [Cu(Me2oxpn)Cr(Ph2phen)2](NO3)3 (1) and [Cu(Me2oxpn)Cr(Mephen)2] (NO3)3 (2) were further measured and studied, demonstrating the ferromagnetic interaction between the adjacent chromium (III) and copper (II) ions through the oxamido‐bridge in both complexes 1 and 2. Based on the spin Hamiltonian, ? = ‐ 2J?1 · ?2, the exchange integrals J were evaluated as + 21.5 an?1 for 1 and + 22.8 cm?1 for 2.  相似文献   

3.
A binuclear copper(II) complex [Cu2 (μ-pyo)2Br4] n (where pyo = pyridine N-oxide) has been synthesized and its structure determined by X-ray crystallography. This complex crystallizes in monoclinic, space group P21/c, with unit cell dimensions a = 11.020(3) Å, b = 10.049(3) Å, c = 7.905(2) Å, β = 110.609(3)°, and Z = 2. The structure was refined to final R = 0.0311 and wR = 0.0721 for 1302 observed reflections (I > 2σ(I)). In the complex, two Cu(II) ions are bridged by two pyo ligands and four bromides coordinate the Cu(II); the distance between the bridged Cu(II) ions is 3.261 Å. The variable-temperature (4–300 K) magnetic susceptibility data show that the magnetic moment is zero. Thus, there exists very strong anti-ferromagnetic coupling between the bridged binuclear Cu(II) ions. Density functional calculations yield a singlet-triplet splitting 2J = ?1355 cm?1.  相似文献   

4.
The synthesis and the crystal structures of the complexes [Cu(LI)2](ClO4) ( 1 ) and [Cu(LI)(CH3CN)2(ClO4)2] ( 2 ) are reported. 1 crystallizes in the monoclinic space group C2/c with the unit cell dimensions a = 13.169(4), b = 12.289(3), c = 14.732(3) Å, β = 109.03(2)° and Z = 4. Copper(I) is coordinated to four N atoms of the two 1,10‐Phenanthroline‐5,6‐dione (LI) ligands with a two‐fold axis passing between the ligands. The copper(II) compound 2 crystallizes in the orthorhombic space group Pbn21 with unit cell dimensions of a = 7.498(5), b = 23.492(7), c = 12.363(4) Å and Z = 4. Copper(II) coordination can be described as a distorted octahedron with the N donor atoms of one LI ligand and of two molecules of CH3CN occupying the equatorial positions completed by two oxygen atoms of the two perchlorate molecules in the axial positions.  相似文献   

5.
A new dialkoxo‐bridged diiron(III) complex, [Fe2(BMA)2(CH3O)2Cl2]·2Cl·4CH3OH ( 1 ) [BMA = N,N‐bis(2‐benzimidazolylmethyl)amine], was synthesized and characterized by UV‐visible absorption and infrared spectra and magnetic susceptibilities. The complex crystallizes in the monoclinic system, space group P2(1)/n, a = 12.9659(19) Å, b = 10.0278(16) Å, c = 17.919(2) Å, β = 93.766(8)° , V = 2324.8(6) Å3, Z = 2, F(000) = 1036, Dc = 1.426 g cm?3, µ = 0.908 mm?1. According to X‐ray crystallographic studies, each Fe(III) ion lies in a highly distorted octahedral environment, and two Fe(III) ions are bridged by the methoxyl oxygens. Cryomagnetic analyses indicated a moderate antiferromagnetic interaction between the high‐spin Fe(III) ions, with J = ? 27.05 cm?1. Moreover, the binding interaction of DNA with the diiron complex was investigated by spectroscopic and agarose gel electrophoretic methods, showing moderate cleavage activity on pBR322 plasmid DNA at physiological pH and temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Three new diclofenac‐based copper(II) complexes, namely tetrakis{μ‐2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O:O′}bis(methanol‐κO)copper(II), [Cu2(μ‐dicl)4(CH3OH)2] ( 1 ), bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1‐vinyl‐1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(vim)2] ( 2 ), and bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(im)2] ( 3 ) [dicl is diclofenac (C14H10Cl2NO2), vim is 1‐vinylimidazole (C5H6N2) and im is imidazole (C3H4N2)], have been synthesized and characterized by elemental analysis, FT–IR spectroscopy, thermal analysis and single‐crystal X‐ray diffraction. X‐ray diffraction analysis shows that complex 1 consists of dimeric units in which the dicl ligand exhibits a bidentate syn,syn‐μ2 coordination mode linking two copper(II) centres. Complexes 2 and 3 have mononuclear units with the general formula [Cu(dicl)2L2] (L is vim or im) in which the CuII ions are octahedrally coordinated by two L and two dicl chelating ligands. The L and dicl ligands both occupy the trans positions of the coordination octahedron. The different coordination modes of dicl in the title complexes were revealed by Fourier transform IR (FT–IR) spectroscopy. The spin matching between the copper(II) centres in the dimeric [Cu2(μ‐dicl)4(CH3OH)2] units was also confirmed by magnetic data to be lower than the spin‐only value and electron paramagnetic resonance (EPR) spectra. The thermal properties of the complexes were investigated by thermogravimetric (TG) and differential thermal analysis (DTA) techniques.  相似文献   

7.
N,N‐bis(carboxymethyl)‐1‐adamantylamine acid (H2BCAA) or N‐(1‐adamantyl)‐iminodiacetic acid forms zwitterions that are intra‐stabilized by a ‘bifurcated’ N+‐H···O(carboxyl)2 interaction. In the crystal, both half‐protonated carboxyl groups of H2BCAA± are involved in linear O‐H···O inter‐molecular bridges of 2.46Å. In the studied BCAA‐CuII derivatives, the iminodiacetate‐moiety of the BCAA chelating ligand exhibits a mer‐NO2 conformation in [Cu(BCAA)(H2O)2] ( 1 ) and [Cu(BCAA)(Him)]2 ( 2 ), but a fac‐O2+N(apical) conformation in [Cu(BCAA)(bpy)(H2O)]·3.5H2O ( 3 ) [Him = imidazole, bpy =2,2′‐bipyridine]. In clear contrast, dipyridylamine (dpya), as auxiliary ligand, seems to be unable to promote the fac‐O2+N(apical) conformation in BCAA, as reveal the structures of two new salts with the trinuclear cation [(dpya)2Cu‐μ2‐Cu(BCAA)2‐Cu(dpya)2]2+ and the anions [Cu(BCAA)2]2? ( 4 ) or NO3? ( 5 ), respectively.  相似文献   

8.
A novel naphthalenediol‐based bis(salamo)‐type tetraoxime compound (H4L) was designed and synthesized. Two new supramolecular complexes, [Cu3(L)(μ‐OAc)2] and [Co3(L)(μ‐OAc)2(MeOH)2]·4CHCl3 were synthesized by the reaction of H4L with Cu(II) acetate dihydrate and Co(II) acetate dihydrate, respectively, and were characterized by elemental analyses and X‐ray crystallography. In the Cu(II) complex, Cu1 and Cu2 atoms located in the N2O2 sites, and are both penta‐coordinated, and Cu3 atom is also penta‐coordinated by five oxygen atoms. All the three Cu(II) atoms have geometries of slightly distorted tetragonal pyramid. In the Co(II) complex, Co1 and Co3 atoms located in the N2O2 sites, and are both penta‐coordinated with geometries of slightly distorted triangular bipyramid and distorted tetragonal pyramid, respectively, while Co2 atom is hexa‐coordinated by six oxygen atoms with a geometry of slightly distorted octahedron. These self‐assembling complexes form different dimensional supramolecular structures through inter‐ and intra‐molecular hydrogen bonds. The coordination bond cleavages of the two complexes have occurred upon the addition of the H+, and have reformed again via the neutralization effect of the OH?. The changes of the two complexes response to the H+/OH? have observed in the UV–Vis and 1H NMR spectra.  相似文献   

9.
A novel one‐dimensional coordination polymer, Catena‐poly [bis(4‐cyano‐pyridyl) copper(II)‐di‐thiocyanate], 1 [CuII‐(cypy)2N.S‐SCN)2] (cypy = 4‐cyano‐pyridyl), was synthesized in a solution reaction of Cu(NO3)2·3H2O, 4‐cyano‐pyridine and KSCN in mole ratio of 1:2:2 at room temperature. Its crystal structure was determined by single‐crystal X‐ray diffraction. The crystal belongs to monoclinic crystal system, space group P21/c with cell parameters a = 1.0719(2), b = 1.8441(4), c =0.9144(2) nm, β = 110.49(3)° and Z = 4. A full‐matrix least‐squares refinement gave R1 = 0. 0393 and wR2= 0.0916 for 1554 reflections having 1 >2σ(I). The crystal is thermally stable up to approximately 170 °C.  相似文献   

10.
Three coordination complexes with CuI centres have been prepared using the symmetrical flexible organic ligands 1,3‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}propane (L1) and 1,4‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}butane (L2). Crystallization of L1 with Cu(SO3CF3)2 and of L2 with Cu(BF4)2 and Cu(ClO4)2 in a CH2Cl2/CH3OH mixed‐solvent system at room temperature afforded the coordination complexes catena‐poly[[copper(I)‐μ‐1,3‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}propane] methanesulfonate dichloromethane 0.6‐solvate], {[Cu(C25H18N6O2S2)](CF3SO3)·0.6CH2Cl2}n, (I), bis(μ‐1,4‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}butane)dicopper(I) bis(tetrafluoridoborate)–dichloromethane–methanol (1/1.5/1), [Cu2(C26H20N6O2S2)2](BF4)2·1.5CH2Cl2·CH3OH, (II), and bis(μ‐1,4‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}butane)dicopper(I) bis(perchlorate)–dichloromethane–methanol (1/2/1), [Cu2(C26H20N6O2S2)2](ClO4)2·2CH2Cl2·CH3OH, (III). Under the control of the dumbbell‐shaped CF3SO3 anion, complex (I) forms a one‐dimensional chain and neighbouring chains form a spiral double chain. Under the control of the regular tetrahedron‐shaped BF4 and ClO4 anions, complexes (II) and (III) have been obtained as bimetallic rings, which further interact viaπ–π interactions to form two‐dimensional networks. The anions play a decisive role in determining the arrangement of these discrete molecular complexes in the solid state.  相似文献   

11.
Seven new μ‐oxamido copper(II)‐lanthanide(III) heterobimetalic complexes described by the formula Cu(obbz) Ln‐(Ph‐phen)2NO3(Ln = La, Nd, Eu, Gd, Tb, Ho, Er), where obbz denotes the oxamidobis(benzoato) and Ph‐phen represents 5‐phenyl‐1, 10‐phenanthroline, have been synthesized and characterized by the elemental analyses, spectroscopic (IR, UV, ESR) studies, magnetic moments (at room temperature) and molar conductivity measurement. The temperature dependence of the magnetic susceptibility of Cu(obbz)Gd(Ph‐phen)2NO3 complex has been measured over the range 4.2–300 K. The least‐squares fit of the experimental susceptibilities based on the spin Hamiltonian operator, ? = ?2 J?1·?2, yielded J= +1.28 cm?1, a weak ferromagnetic coupling, A plausible mechanism for a ferromagnetic coupling between Gd(III)‐Cu(II) is discussed in terms of spin‐polarization.  相似文献   

12.
Isotypic Borophosphates MII(C2H10N2)[B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn): Compounds containing Tetrahedral Layers The isotypic compounds MII(C2H10N2) · [B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn) were prepared under hydrothermal conditions (T = 170 °C) from mixtures of the metal chloride (chloride hydrate, resp.), Ethylenediamine, H3BO3 and H3PO4. The orthorhombic crystal structures (Pbca, No. 61, Z = 8) were determined by X‐ray single crystal methods (Mg(C2H10N2)[B2P3O12(OH)]: a = 936.81(2) pm, b = 1221.86(3) pm, c = 2089.28(5) pm) and Rietveld‐methods (MII = Mn: a = 931.91(4) pm, b = 1234.26(4) pm, c = 2129.75(7) pm, Fe: a = 935.1(3) pm, b = 1224.8(3) pm, c = 2088.0(6) pm, Ni: a = 939.99(3) pm, b = 1221.29(3) pm, c = 2074.05(7) pm, Cu: a = 941.38(3) pm, b = 1198.02(3) pm, c = 2110.01(6) pm, Zn: a = 935.06(2) pm, b = 1221.33(2) pm, c = 2094.39(4) pm), respectively. The anionic part of the structure contains tetrahedral layers, consisting of three‐ and nine‐membered rings. The MII‐ions are in a distorted octahedral or tetragonal‐bipyramidal [4 + 2] (copper) coordination formed by oxygen functions of the tetrahedral layers. The resulting three‐dimensional structure contains channels running along [010]. Protonated Ethylenediamine ions are fixed within the channels by hydrogen bonds.  相似文献   

13.
采用稀释法与胺5倍过量合成了一种新型的含吡啶环的开链二胺1a(N,N′-双(2-氨基乙基)-2,6-吡啶二甲酰胺)。此外,合成了六个新型多齿希夫碱配体N,N′-双(β-R-苯甲醛亚胺基乙基)-2,6-吡啶二甲酰胺[其中,R=H (2a),o-OH (2b),p-OH (2c),m-NO2 (2d),p- N(CH3)2 (2e)]及N,N′-双[γ-水杨醛亚胺基正丙基]-2,6-吡啶二甲酰胺2f。通过元素分析,紫外-可见光谱,红外光谱,氢核磁共振谱及质谱对化合物进行了表征。通过化合物2e的单晶结构X-射线单晶衍射分析表明该晶体属于立方晶系P-1空间群,其晶胞参数为:a=11.010(2) nm,b=13.865(3) nm,c=9.6537(19) nm,α=102.77(2)º,β=92.07(3)º,γ=87.98(3)º,V=1435.7(5) nm3,Z=2,Dc=1.230 mg•cm-3,Mr=531.66。微量热法检测了化合物对大肠杆菌的抑制作用,并初步分析了化合物结构与抗菌活性之间的关系。实验结果表明,所有化合物都对大肠杆菌有抑制作用,其中水杨醛希夫碱的抑菌活性最好。  相似文献   

14.
Solvothermal reactions of Cu2(OH)2CO3 with 1,3‐bis(pyridin‐4‐yl)propane (bpp) in the presence of aqueous ammonia in 4‐iodotoluene/CH3CN or 1,4‐diiodobenzene/CH3CN afforded two [Cu2I2]‐based coordination polymers, namely catena‐poly[[[di‐μ‐iodido‐dicopper(I)]‐bis[μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′]] p‐toluidine tetrasolvate], {[Cu2I2(C13H14N2)2]·4C7H9N}n, (I), and the analogous 1,4‐diiodobenzene monosolvate, {[Cu2I2(C13H14N2)2]·C6H4I2}n, (II). The [Cu2I2] unit of (I) lies on a centre of symmetry at the mid‐point of the two I atoms, while that of (II) has a twofold axis running through the I...I line. In (I) and (II), each Cu centre is tetrahedrally coordinated by two μ‐I and two N atoms from two different bpp ligands. Each rhomboid [Cu2I2] unit can be considered as a four‐connecting node linked to the symmetry‐related [Cu2I2] units via two pairs of bpp ligands to form a one‐dimensional double chain along the c axis. The dimensions of the [Cu2I2(bpp)2]2 rings in (I) and (II) are different, which may be due to the presence of different guest solvent molecules in the structures. In (I), one p‐toluidine molecule, derived from an Ullmann coupling reaction of 4‐iodotoluene with ammonia, interacts with the [Cu2I2] cluster fragment through N—H...I hydrogen bonds, while the two p‐toluidine molecules interact via N—H...N hydrogen bonds. In (II), two I atoms of each 1,4‐diiodobenzene molecule are linked to the I atoms of the [Cu2I2] fragments from a neighbouring chain via I...I secondary interactions.  相似文献   

15.
A novel double helical dicopper(II) complex was synthesized by reaction of a polydentate ligand L = 2,2′‐bipyridyl‐6,6′‐bis(2‐acetylpyrazinohydrazone) with copper(II) perchlorate in CH3CN. The self‐assembling process was studied by UV‐Vis spectrometric titration experiments which revealed the formation of dinuclear complexes [Cu2L2](ClO4)4. The structure of dicopper double‐helicate was confirmed by X‐ray diffractometry. Each copper(II) center occupies a distorted octahedral environment. Variable‐temperature magnetic measurements reveal weak antiferromagnetic interactions between Cu(II) ion centers with J = ?0.63 cm?1.  相似文献   

16.
A novel La( III )‐Cu( II ) heterometallic coordination polymer {[LaCu2(NTA)2(4,4′‐bpy)(H2O)3]NO3·5H2O]n, where H3NTA denotes nitrilotriacetic acid and 4,4′‐bpy denotes 4, 4‐bipyridine, was synthesized and characterized by IR spectrum, elemental analysis and X‐ray diffraction. The complex crystallizes in the triclinic space group Pi with cell parameters a = 1.33710(10) nm, b = 1,44530(10) nm, c =1.0949(2) nm, α = 71.905(7)°, β = 74.327(7)°, γ = 64.427(9)°, V = 1.7912(4) nm3and Z = 2. It consists of heterometallic units, in which each La( II ) ion is coordinated in a distorted monocapped square antiprism by three oxygen atoms from water molecules and six carboxyl oxygen atoms from five NTA3? ions, and each Cu( I ) ion is coordinated by one nitrogen atom from 4,4′‐bpy and one nitrogen atom, three oxygen atoms from NTA3?. In the title complex, La( I ) ions and Cu( II ) ions are connected by the heterometallic bridging of NTA3?, constructing a two‐dimensional network structure along the [110]. And it is extended into an infinite three‐dimensional network structure by the formation of homometallic bridging of Cu‐4, 4′‐bpy‐Cu, exhibiting a certain inclusion ability.  相似文献   

17.
We report the synthesis, characterization, and crystal structures of new ligands of the pyridinylpyrazole type, i.e., 3,5‐bis(4‐butoxyphenyl)‐1‐(pyridin‐2‐yl)‐1H‐pyrazole ( L 1 ) and 3,5‐bis(4‐phenoxyphenyl)‐1‐(pyridin‐2‐yl)‐1H‐pyrazole ( L 2 ) (Scheme 1), and the study of their coordination behavior towards CuI and CuII. The versatility of this type of ligand, which can give access to different coordination spheres about the metal center, depending on the nature of the copper starting material used in the preparation of the complexes (Scheme 2), is illustrated. Thus, pseudo‐tetrahedral CuI as well as six‐coordinated tetragonal and distorted tetragonal pyramidal CuII derivatives were obtained for [Cu(L)2]PF6, [Cu(Cl)2(L)2] (L= L 1 , L 2 ), and [Cu(Cl)( L 1 )2]PF6, respectively. We also present a crystallographic support of a distorted octahedral cis‐bis(tetrafluoroborato‐κF)copper(II) compound found for [Cu(BF4)2( L 1 )2] ( 3 ).  相似文献   

18.
We report the synthesis, crystal structures, thermal and magnetic characterizations of a family of metal‐organic frameworks adopting the niccolite (NiAs) structure, [dmenH22+][M2(HCOO)62−] (dmen=N,N′‐dimethylethylenediamine; M=divalent Mn, 1Mn ; Fe, 2Fe ; Co, 3Co ; Ni, 4Ni ; Cu, 5Cu ; and Zn, 6Zn ). The compounds could be synthesized by either a diffusion method or directly mixing reactants in methanol or methanol–water mixed solvents. The five members, 1Mn , 2Fe , 3Co , 4Ni , and 6Zn are isostructural and crystallize in the trigonal space group P 1c, while 5Cu crystallizes in C2/c. In the structures, the octahedrally coordinated metal ions are connected by anti–anti formate bridges, thus forming the anionic NiAs‐type frameworks of [M2(HCOO)62−], with dmenH22+ located in the cavities of the frameworks. Owing to the Jahn–Teller effect of the Cu2+ ion, the 3D framework of 5Cu consists of zigzag Cu‐formate chains with Cu OCHO Cu connections through short basal Cu O bonds, further linked by the long axial Cu O bonds. 6Zn exhibits a phase transition probably as a result of the order–disorder transition of the dmenH22+ cation around 300 K, confirmed by differential scanning calorimetry and single crystal X‐ray diffraction patterns under different temperatures. Magnetic investigation reveals that the four magnetic members, 1Mn , 2Fe , 3Co , and 4Ni , display spin‐canted antiferromagnetism, with a Néel temperature of 8.6 K, 19.8 K, 16.4 K, and 33.7 K, respectively. The Mn, Fe, and Ni members show spin‐flop transitions below 50 kOe. 2Fe possesses a large hysteresis loop with a large coercive field of 10.8 kOe. The Cu member, 5Cu , shows overall antiferromagnetism (both inter‐ and intra‐chains) with low‐dimensional characteristics.  相似文献   

19.
Synthesis and characterization of mononuclear transition metal complexes viz., Co(II), Ni(II), Cu(II) and Zn(II) with a newly designed ligand, (E)‐2‐benzamido‐N'‐(1‐(2‐hydroxy‐6‐methyl‐4‐oxo‐4H‐pyran‐3‐yl) ethylidene) benzohydrazide ( H 2 L ) are reported. Molecular structures of H 2 L , Ni(II) and Cu(II) complexes were determined by single‐crystal X‐ray diffraction studies. The structures were stabilized by various intra/inter‐molecular H‐bonding, C‐H···π and π···π stacking interactions. H 2 L exists in zwitterionic form and acts in a monoanionic manner. Ligand/metal ratio was 2:1 for cobalt, nickel and zinc, whereas 1:1 for the copper complex. Co(II), Ni(II) and Zn(II) complexes display distorted octahedral geometry, while the Cu(II) complex shows distorted square pyramidal geometry around the metal ion. Hirshfeld surface analysis and 2D fingerprint plots revealed that H 2 L and its complexes were supported mainly by H?H, O?H and C?H intermolecular interactions. The synthesized compounds were screened for in vitro anti‐inflammatory activity by gelatin zymography and the activity was comparable with tetracycline. Their cleavage behavior towards calf thymus DNA has been studied using agarose gel electrophoresis method. H 2 L and Cu(II) complex were selected by National Cancer Institute (NCI) for in vitro single dose testing in the full NCI 60 cell lines panel assay. Finally, molecular docking simulation effectively proves the binding of all the synthesized compounds at cyclooxygenase‐2 (COX‐2) active sites.  相似文献   

20.
The title compound, [Cu(C10H9N2O)2] or [CuII(CYMB)2], (I), was obtained in an attempt to reduce trans‐bis(2‐{[3,5‐bis(trifluoromethyl)phenyl]iminomethyl}phenolato)copper(II), [Cu(TIMB)2], (II), with bis(pentamethylcyclopentadienyl)cobalt(II) [decamethylcobaltocene, Cp*2Co, (III)]. The molecular structure of (I) has the CuII centre located on an inversion centre of the C2/c space group. A density functional theory (DFT) analysis at the B3LYP/Lanl2dz(CuF);6‐31G**(CHNO) level performed in order to optimize the structures of the free ligands CYMB and TIMB, and the metal complexes [CuI/II(CYMB)2]−/0 and [CuI/II(TIMB)2]−/0, reproduced well the X‐ray diffraction structure and allowed us to infer the insertion of the cyanomethide anion on the 3,5‐bis(trifluoromethyl)phenyl system from an evaluation of the Mulliken atomic charges and the electronic energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号