首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
The R? CH2? HO…H? X (R = SCl, Cl, SH, NO2, OMe, CHO, CN, C2H5, CH3, H; X = F, Cl, Br) complexes are considered here as the interest sample for the consideration of different measures of H‐bond strength. The intermolecular interaction energies are predicted by using MP2/6‐31++G(d,p) and B3LYP/6‐31++G(d,p) methods with basis set superposition error and zero‐point energy corrections. The results showed that intermolecular hydrogen bonds for complexes with HF are stronger than such interactions in complexes with HCl and HBr. Quantum theory of “Atoms in Molecules” and natural bond orbitals method were applied to analyzed H‐bond interactions. The gas phase thermodynamic properties of complexes were predicted using quantum mechanical computations. The obtained results showed a strong influence of the R and X substituents on the thermodynamic properties of complexes. Numerous correlations between topological, geometrical, thermodynamic properties and energetic parameters were also found. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
We have investigated the geometries as well as the longitudinal dipole moment (micro), polarizability (alpha), and first hyperpolarizability (beta) of polymethineimine oligomers using different approaches [Hartree-Fock (HF), second-order M?ller-Plesset (MP2), and hybrid density functional theory (DFT) methods (B3LYP and PBE0)] for evaluating the geometries and the nonlinear optical properties. It turns out that (i) HF and the selected DFT methods provide the incorrect sign for beta of short and medium size oligomers. (ii) The B3LYP and PBE0 electron correlation correction are too small for micro, too large for alpha, and for some oligomer lengths, they are in the wrong direction for beta. (iii) On the contrary to polyacetylene, the hybrid-DFT geometries are in poor agreement with MP2 geometries; the former showing much smaller bond length alternations.  相似文献   

3.
仇毅翔  王曙光 《化学学报》2006,64(14):1416-1422
采用从头计算HF, MP2方法和密度泛函理论, 对Au(II)系列化合物[Au(CH2)2PH2]2X2 (X=F, Cl, Br, I)的几何结构、电子结构和振动频率进行了研究. 研究表明Au的5d和6s电子参与Au—Au以及Au—X之间的成键. Au—Au, Au—X键强烈的电子相关作用使HF方法不适于该体系的研究, BP86和B3LYP两种泛函给出较大的Au—Au和Au—X键长, 而MP2方法和局域的密度泛函方法则给出了合理的结构参数. 局域密度泛函方法计算得到的Au—Au键和 Au—X键振动频率也与实验数据符合较好. 还运用含时密度泛函理论计算了[Au(CH2)2PH2]2X2的电子激发能, 对分子在紫外-可见光谱范围内的电子跃迁进行了分析, 考察了卤素配体对激发能的影响, 并结合分子轨道能级的变化对此给予了解释.  相似文献   

4.
Ab initio methods at the levels HF/cc‐pVDZ, HF/6‐31G(d,p), MP2/cc‐pVDZ, and MP2/6‐31G(d,p), as well as methods based on density functional theory (DFT) employing the hybrid functional B3LYP with the basis sets cc‐pVDZ and 6‐31G(d,p), have been applied to study the conformers of 2,6‐distyrylpyridine. Bond distances, bond angles, and dihedral angles have been calculated at the B3LYP level. The calculated values were in good agreement with those measured by X‐ray diffraction analysis of 2,6‐distyrylpyridine. The values calculated using the Hartree‐Fock method and second‐order perturbation theory (MP2) were inconsistent. The optimized lowest‐energy geometries were calculated from the reported X‐ray structural data by the B3LYP/cc‐pVDZ method. Three conformations, A, B, and C, were proposed for 2,6‐distyrylpyridine. Calculations at the three levels of theory indicated that conformation A was the most stable structure, with conformations C and B being higher in energy by 1.10 and 2.57 kcal/mol, respectively, using the same method and basis function. The same trend in the relative energies of the three possible conformations was observed at the two levels of theory and with the different basis sets employed. The reported X‐ray data were utilized to optimize total molecular energy of conformation A at the different calculation levels. The bond lengths, bond angles, and dihedral angles were then obtained from the optimized geometries by ab initio methods and by applying DFT using the two basis functions cc‐pVDZ and 6‐31G(d,p). The values were analyzed and compared. The calculated total energies, the relative energies of the molecular orbitals, the gap between them, and the dipole moment for each conformational structure proposed for 2,6‐distyrylpyridine are also reported. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
We present density functional theory (DFT) interaction energies for the sandwich and T‐shaped conformers of substituted benzene dimers. The DFT functionals studied include TPSS, HCTH407, B3LYP, and X3LYP. We also include Hartree–Fock (HF) and second‐order Møller–Plesset perturbation theory calculations (MP2), as well as calculations using a new functional, P3LYP, which includes PBE and HF exchange and LYP correlation. Although DFT methods do not explicitly account for the dispersion interactions important in the benzene–dimer interactions, we find that our new method, P3LYP, as well as HCTH407 and TPSS, match MP2 and CCSD(T) calculations much better than the hybrid methods B3LYP and X3LYP methods do. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

6.
在密度泛函理论框架下, 应用不同泛函计算了配合物Ni(CO)n(n=1~4)的平衡几何构型和振动频率. 考察了泛函和基组重叠误差对预测Ni—CO键解离能的影响. 计算结果表明, 用杂化泛函能得到与实验一致的优化几何构型和较合理的振动频率. 对Ni(CO)n(n=2~4)体系, 用“纯”泛函, 如BP86和BPW91, 可得到与CCSD(T)更符合、 并与实验值接近的解离能. 当解离产物出现单个金属原子或离子(如金属羰基配合物的完全解离)时, BSSE校正项的计算中应保持金属部分的电子结构一致. 只有考虑配体基组和不考虑配体基组两种情况下金属的电子构型与配合物中金属的构型一致时, 才能得到合理的BSSE校正, 从而预测合理的解离能.  相似文献   

7.
The unusual weak T-shaped XH…π hydrogen bonds are found between the BB double bond of the triplet state HBBH and the acid hydrogen of HF, HCl, HCN and H2C2 using UMP2 and UB3LYP methods at 6-311++G(2df,2p) and aug-cc-pVTZ levels. The binding energies follow the order of HBBH…HF > HBBH…HCl > HBBH…HCN > HBBH…H2C2, and the hydrogen-bonded interactions in the triplet state complexes HBBH…HX (3B1) are found to be weaker than those in HCCH…HX and OCBBCO…HX. The analyses of natural bond orbital (NBO) and the electron density shifts reveal that the nature of the T-shaped XH…π hydrogen-bonded interaction is that the lost density from the π-orbital of BB bond is shifted toward the hydrogen atom of HX, leading to the electron density accumulation and the formation of the hydrogen bond. The atoms in molecules (AIM) theory has been also applied to characterize bond critical points and confirm that it is difficult for the ground electronic state of HBBH to be as the hydrogen-bond proton acceptor, perhaps due to the nature of electron-deficient BB double bond.  相似文献   

8.
Eleven exchange‐correlational functionals of different types corrected for dispersion by Grimme's D3 correction in conjunction with the aug‐cc‐pVTZ basis set were tested on the following noble gas (Ng) dimers: Ne2, Ar2, Kr2, Xe2, and Rn2. For comparison, the D2 and D3BJ corrections were probed with the B3LYP functional. From post‐HF wavefunction methods, CCSD(T) theory was also included. The investigated properties involved potential energy curves, equilibrium bond distances, and interaction energies. The B3LYP‐D3, B3LYP‐D3BJ, and PBE0‐D3 functionals performed overall best for bond distances, while B3LYP‐D3 and B97‐D3 performed best for interaction energies. The importance of fortunate error cancellations was seen in the often reduced agreement with reference data upon correction for BSSE. As several functionals performed well selectively for some noble gases (and poorly for others), we also analysed the performance on the Ng2 dimers individually and recommended DFT‐D3 functionals for the calculation of large clusters of each Ng.  相似文献   

9.
Two kinds of sixfold internal rotational configurations of toluene, para‐fluorotoluene, para‐chlorotoluene, and 4‐methylpyridine were calculated using Hartree–Fock (HF), second‐order Møller–Plesset (MP2), and Beck's three parameter hybrid functional using the LYP correlation functional (B3LYP) theory methods with various high‐level basis sets. Structures and energies were compared for different configurations. Calculations indicate that the orthogonal configuration has a local minimum while the planar configuration is a transition structure. Furthermore, geometries of the orthogonal and the planar configurations are quite similar, except for a methyl CH bond. Sixfold internal rotational barriers were calculated from the energy difference of two different configurations. For the calculated results, HF methods underestimated the rotational barriers, but MP2 calculations overestimated them. However, the density functional theory (DFT) method is a reliable method since the calculated internal rotational barriers are similar to the experimental ones. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 772–778, 2000  相似文献   

10.
The geometry of the nitrate radical, NO3*, for which unrestricted Hartree-Fock (HF) breaks spatial symmetry of the wave function, was optimized using hybrid density functionals that include varying fractions of Hartree-Fock exchange. Although symmetry breaking was not observed even when the functional with the highest HF exchange (BHandHLYP) was used, only B3LYP correctly describes the D(3h) symmetry of NO3* as ground-state structure with the lowest energy. Further, geometries and energies of the stationary points in the addition of NO3* to ethyne, propyne, and 2-butyne were calculated using ab initio and density functional methods. The reactions proceed through Z-configurated transition states leading to Z-configurated vinyl radicals with the activation barrier decreasing with increasing methyl substitution at the C[triple bond]C by ca. 11 kJ mol(-1) per methyl group. It was found that the results obtained at the BHandHLYP/cc-pVDZ level of theory are in good agreement with the data from single-point QCISD and CCSD(T) calculations.  相似文献   

11.
A number of hydrogen-bond related quantities—geometries, interaction energies, dipole moments, dipole moment derivatives, and harmonic vibrational frequencies—were calculated at the Hartree—Fock, MP2, and different DFT levels for the HCN dimer and the periodic HCN crystal. The crystal calculations were performed with the Hartree—Fock program CRYSTAL92, which routinely allows an a posteriori electron-correlation correction of the Hartree—Fock obtained lattice energy using different correlation-only functionals. Here, we have gone beyond this procedure by also calculating the electron-correlation energy correction during the structure optimization, i.e., after each CRYSTAL92 Hartree—Fock energy evaluation, the a posteriori density functional scheme was applied. In a similar manner, we optimized the crystal structure at the MP2 level, i.e., for each Hartree—Fock CRYSTAL92 energy evaluation, an MP2 correction was performed by summing the MP2 pair contributions from all HCN molecules within a specified cutoff distance. The crystal cell parameters are best reproduced at the Hartree—Fock and the nongradient-corrected HF + LDA and HF + VWN levels. The BSSE-corrected MP2 method and the HF + P91, HF + LDA, and HF + VWN methods give lattice energies in close agreement with the ZPE-corrected experimental lattice energy. The (HCN)2 dimer properties are best reproduced at the MP2 level, at the gradient-corrected DFT levels, and with the B3LYP and BHHLYP methods. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Several economical methods for geometry optimization, that should be applicable to larger molecules, have been evaluated for 19 phosphorus acid derivatives. MP2/cc-pVDZ geometry optimizations are used as reference points and the geometries obtained from the other methods are evaluated with respect to deviations in bond lengths and angles, from the reference geometries. The geometry optimization methods are also compared to the much used B3LYP/6-31G(d) method. Single point energies obtained by subsequent EDF1/6-31+G(d) or B3LYP/6-31+G(d,p) calculations on the respective equilibrium geometries are also reported relative to the energies obtained from the reference geometries. The geometries from HF/MIDI! optimizations were closer to those of the references than the geometries of the HF/3-21G(d), HF/6-31G(d), and B3LYP/MIDI! optimizations. The EDF1/6-31+G(d) or B3LYP/6-31+G(d,p) single point energies obtained from the HF/3-21G(d), HF/6-31G(d), and B3LYP/MIDI! geometries gave a mean absolute deviation (MAD) from that of the reference geometries of 1.4-3.9 kcal mol m 1 . The HF/MIDI! geometries, however, gave EDF1/6-31+G(d) and B3LYP/6-31+G(d,p) energies with a MAD of only about 0.5 and 0.55 kcal mol m 1 respectively from the energies obtained with the reference geometries. Thus, use of HF/MIDI! for geometry optimization of phosphorus acids is a method that gives geometries of near-MP2 quality, resulting in a fair accuracy of energies in subsequent single point calculations, at a much lower computational cost other methods that give similar accuracies.  相似文献   

13.
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.  相似文献   

14.
Quantum mechanical calculations of energies, geometries and vibrational wavenumbers of 6-aminopenicillanic acid were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-311G(d,p) basis set. The optimized geometrical parameters obtained by HF and DFT calculations are in good agreement with experimental X-ray data. A detailed interpretation of the infrared spectra has also been reported. The theoretical IR and Raman spectrograms have been constructed and compared with the experimental FT-IR and FT-Raman spectra. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The thermodynamic parameters have also been computed.  相似文献   

15.
Geometric parameters and formation enthalpy and the enthalpy of the radicals formed during the homolytic breakage of C-NO2 bond in 37 aromatic nitro compounds were calculated using different bases of the hybrid density functional method B3LYP, as well as the composite CBS-QB3 methods. On the basis of thermochemical data, were calculated the C-NO2 bond dissociation energy and the activation energy of the radical gas-phase decomposition. Donor substituents were shown to cause an increase in the C-NO2 bond dissociation energy, while the acceptors decrease it. The values of activation energies of gas-phase decomposition of aromatic nitro compounds calculated basing on the C-NO2 bond dissociation energy are in good agreement with experiment.  相似文献   

16.
17.
This paper reports on quantum-chemical analysis of the linear structure of CuCl2 by Hartree-Fock (HF) and density functional theory (DFT) methods and also by time-dependent HF (TD HF) and DFT (TD DFT) techniques. Using pure DFT exchange correlation functional (B3LYP) yields the best agreement with the experimental electronic spectra of CuCl2. In this case, the odd electron is delocalized over the molecule, spin density on copper being 0.27. The ground state of the CuCl2 molecule is 2Πg with linear geometry.  相似文献   

18.
The reaction energy profile for H2 + OH → H + H2O was computed using HF, MP2, MP4, QCISD, G1, G2, and G2MP2 ab initio methods. In addition, the B3LYP, B3P86, B3PW91, BLYP, BP291, and SVWN density functional theory (DFT) methods were also used. All the ab initio methods, with the exception of the G series, produced much higher activation barriers and heats of reaction than the experimental values. On the other hand, the DFT methods produced negative forward and reverse barriers which were too low, with the exception of the hybrid DFT methods. The G2 ab initio method generated energies which deviated from the experimental values by ∼ 1 kcal/mol and therefore should be considered a very accurate computational method. The hybrid DFT methods produced positive forward reaction barriers with energies that were 2–4 kcal/mol lower than the experimental values. The geometries of the transition state and energies computed by the ab initio and DFT methods were compared. These results suggest that, in the hybrid exchange functional, the portion of the Slater exchange term should be increased. This may be the reason why the computed energies were too low. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62: 639–644, 1997  相似文献   

19.
Optimized geometries and vibrational frequencies were calculated for the hexamolybdoaluminate(III), [AlIII(OH)6Mo6O18]3-, Anderson-type heteropolyanion with the HF, B3LYP, B3PW91, B3P86 and B1LYP methods of theory using the LanL2DZ, SDD and combination of LanL2DZ with 6-31G (d, p) basis sets. The agreement between the optimized and experimental geometries was in the decreasing order: HF, B3P86, B3PW91, B1LYP and B3LYP. The calculated frequencies by the B3LYP have the smallest mean root mean square (RMS) error. The effect of the basis set on the calculated bond lengths and frequencies by the density functional calculations (DFT) methods was minor. The agreement between the previously reported IR and Raman spectra and the calculated values is, in general, good.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号