首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for the determination of trace copper was described. A multiwalled carbon nanotube modified carbon paste electrode was prepared and the adsorptive voltammetric behavior of copper‐alizarin red S (ARS) complex at the modified electrode was investigated. By use of the second‐order derivative linear sweep voltammetry, it was found that in 0.04 mol/L acetate buffer solution (pH 4.2) containing 4×10?6 mol/L ARS, when accumulation potential is 0 mV, accumulation time is 60 s and scan rate is 100 mV/s, the complex can be adsorbed on the surface of the electrode, yielding one sensitive reduction peak at ?172 mV (vs. SCE). The peak current of the complex is proportional to the concentration of Cu(II) in the range of 2.0×10?11–4.0×10?7 mol L?1 with a detection limit (S/N=3) of 8.0×10?12 mol/L (4 min accumulation). The proposed method was successfully applied to the determination of copper in biological samples with satisfactory results, the recoveries were found to be 96%–102%.  相似文献   

2.
《Analytical letters》2012,45(6):1165-1173
Abstract

The polarographic behavior of the complex of iron–4– (2–pyridylazo) resorcin(PAR) was studied. In HAc– NaAc– EDTA buffer solution, the complex can be adsorped on a hanging mercury drop electrode giving a sensitive adsorptive complex reduction peak with a peak potential at -0.36V(vs. SCE). Optimum experimental conditions were found by the use of 0.08mol/L HAc, 0.06mol/L NaAc, 5.0 × 10?3mol/L EDTA and 1.0 × 10?5mol/L PAR. With preconcentration for 60s, the derivative peak height of the complex compound is linearly proportional to the concentration for Fe in the range from 1.0 × 10?9mol/L to 1.0 × 10?7mol/L. For a 2–min pre–concentration time, the detection limit found was 2.0 × 10?10mol/L. This method has high sensitivity and selectivity. It has been applied to the determination of trace iron in food and water samples without any pre–separation step.  相似文献   

3.
IntroductionChlordiazepoxide (7 chloro 2 methylamino 5 phenyl 3H 1,4 benzodiazepine 4 oxide)showingpowerfulan tianxietyeffecthasbeenwidelyusedasapsychotherapeu ticdrug .Consequently ,theneedaroseforsensitiveandrapiddeterminationofchlordiazepoxideinblood ,urinean…  相似文献   

4.
In this paper, nichrome was adopted as a substrate, to fabricate the pre‐anodized inlaying ultrathin carbon paste electrode (PAIUCPE). The electrochemical behaviors and diffusion mechanisms of three dihydroxybenzene isomers at the electrode were carefully investigated. The effect of pH on oxidation peak current was also detailedly explained. The results were shown that oxidation peak current not only related to the reaction of electroactive materials at the working electrode, but also depended on the reaction variable of reduction at the auxiliary electrode. The oxidation peaks of hydroquinone (HQ), catechol (CC) and resorcinol (RC) located at 0.181 V, 0.288 V and 0.736 V. For CC, RC and HQ, the oxidation peak currents were linear to the concentrations at the range of 5.0 × 10?6~5.0 × 10?4 mol/L, 3.0 × 10?6~5.0 × 10?4 mol/L and 4.0 × 10?6~4.0 × 10?4 mol/L with the detection limits of 2.0 × 10?7 mol/L, 1.2 × 10?7 mol/L and 1.2 × 10?7 mol/L, respectively. The proposed method was successfully applied in the simultaneous determination of dihydroxybenzene isomers in artificial sewage samples with satisfactory results.  相似文献   

5.
A glassy carbon electrode chemically modified with nickel nanoparticles coupled with reversed‐phase chromatography with pulsed amperometric detection was used for the quantitative analysis of furanic aldehydes in a real sample of sugarcane bagasse hydrolysate. Chromatographic separation was carried out in isocratic conditions (acetonitrile/water, 1:9) with a flow rate of 1.0 mL/min, a detection potential of – 50 mV vs. Pd, and the process was completed within 4 min. The analytical curves presented limits of detection of 4.0 × 10?7 mol/L and 4.3 × 10?7 mol/L, limits of quantification of 1.3 × 10?6 and 1.4 × 10?6 mol/L, amperometric sensitivities of 2.2 × 106 nA mol/L and 2.7 × 106 nA mol/L for furfural and 5‐hydroxymethylfurfural, respectively. The values obtained in this sample by the standard addition method were 1.54 ± 0.02 g/kg for 5‐hydroxymethylfurfural and 11.5 ± 0.2 g/kg for furfural. The results demonstrate that this new proposed method can be used for the quick detection of furanic aldehydes without the interference of other electroactive species, besides having other remarkable merits that include excellent peak resolution, analytical repeatability, sensitivity, and accuracy.  相似文献   

6.
A highly sensitive and selective catalytic adsorptive cathodic striping procedure for the determination of trace germanium is presented. The method is based on adsorptive accumulation of the Ge(IV)‐gallic acid (GA) complex onto a hanging mercury drop electrode, followed by reduction of the adsorbed species. The reduction current is enhanced catalytically by addition of vanadium(IV)‐EDTA. The optimal experimental conditions include the use of 0.03 mol/L HClO4 (pH1.6), 6.0×10?3 mol/L GA, 3.0×10?3 mol/L V(IV), 4.0×10?3 mol/L EDTA, an accumulation potential of ?0.10 V(vs. Ag/AgCl), an accumulation time of 120 s and a differential pulse potential scan mode. The peak current is proportional to the concentration of Ge(IV) over the range of 3.0×10?11 to 1.0×10?8 mol/L and the detection limit is 2×10?11 mol/L for a 120 s adsorption time. The relative standard deviation at 5.0×10?10 mol/L level is 3.1%. No serious interferences were found. The method was applied to the determination of germanium in ore, mineral water and vegetable samples with satisfactory results.  相似文献   

7.
The products of the gas‐phase reactions of OH radicals with 1‐pentene and 2‐methyl‐2‐propen‐1‐ol (221MPO) at T=298±2 K and atmospheric pressure were investigated by using a 4500 L atmospheric simulation chamber that was built especially for this work. The molar yield of butyraldehyde was 0.74±0.12 mol for the reaction of 1‐pentene. This work provides the first product molar yield determination of formaldehyde (0.82±0.12 mol), 1‐hydroxypropan‐2‐one (0.84±0.13 mol), and methacrolein (0.078±0.012 mol) from the reaction of 221MPO with OH radicals. The mechanism of this reaction is discussed in relation to the experimental results. Additionally, taking into consideration the complex mechanism, the rate coefficients of the reactions of OH with formaldehyde, 1‐hydroxypropan‐2‐one, and methacrolein were derived at atmospheric pressure and T=298±2 K.; the obtained values were (8.9±1.6)×10?12, (2.4±1.4)×10?12, and (22.9±2.3)×10?12 cm3 molecule?1 s?1, respectively.  相似文献   

8.
β‐Cyclodextrin functionalized graphene/Ag nanocomposite (β‐CD/GN/Ag) was prepared via a one‐step microwave treatment of a mixture of graphene oxide and AgNO3. β‐CD/GN/Ag was employed as an enhanced element for the sensitive determination of 4‐nitrophenol. A wide linear response to 4‐nitrophenol in the concentration ranges of 1.0×10?8–1.0×10?7 mol/L, and 1.0×10?7–1.5×10?3 mol/L was achieved, with a low detection limit of 8.9×10?10 mol/L (S/N=3). The mechanism and the heterogeneous electron transfer kinetics of the 4‐nitrophenol reduction were discussed according to the rotating disk electrode experiments. Furthermore, the sensing platform has been applied to the determination of 4‐nitrophenol in real samples.  相似文献   

9.
A fluorescent aminoacid was designed for selective and sensitive detection of Cu(II) in aqueous solution. The designing of this Cu(II) fluorescent chemosensing molecule, N ± (1‐naphthyl). aminoacetic acid (NAA), was based on the binding of Cu(II) to aminoacetic acid and the novel charge transfer photophysics of 1‐aminonaphthalenes. The fluorescence of NAA was found quenched by Cu (II) and several other metal ions of similar electronic structure such as Co(II), Ni(II) and Zn(II). The quenching was shown to occur via electron transfer within the metal‐NAA complex, which required an optimal combination of high binding affinity and favorable redox properties of the components in the metal‐NAA complex and hence afforded selective fluorometric detection of Cu(II). The calibration graph obeyed Stern‐Volmer theory and was shown for Cu(II) over the range of 0–2.75 ± 10–4 mol/L. The quenching constant of Cu(II) was measured as 8.0 ± 103 mol/L that was two orders of magnitude higher than those of Co(II), Ni(II) and Zn(II). The 3SD limit of detection for Cu(II) was 8.00 ± 10?6 mol/L with a coefficient of variation of 1.65%. Linear range for quantitative detection of Cu(II) was 2.67 ± 10?5‐2.75 ± 10?4 mol/L. The method was applied to synthetic sample measurements which gave recoveries of 105%‐112%.  相似文献   

10.
WANG Yuane  PAN Dawei  LI Xinmin  QIN Wei 《中国化学》2009,27(12):2385-2391
A bismuth/multi‐walled carbon nanotube (Bi/MWNT) composite modified electrode for determination of cobalt by differential pulse adsorptive cathodic stripping voltammetry is described. The electrode is fabricated by potentiostatic pre‐plating bismuth film on an MWNT modified glassy carbon (GC) electrode. The Bi/MWNT composite modified electrode exhibits enhanced sensitivity for cobalt detection as compared with the bare GC, MWNT modified and bismuth film electrodes. Numerous key experimental parameters have been examined for optimum analytical performance of the proposed electrode. With an adsorptive accumulation of the Co(II)‐dimethylglyoxime complex at ?0.8 V for 200 s, the reduction peak current is proportional to the concentration of cobalt in the range of 4.0×10?10?1.0×10?7 mol/L with a lower detection limit of 8.1×10?11 mol/L. The proposed method has been applied successfully to cobalt determination in seawater and lake water samples.  相似文献   

11.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

12.
In this study for the first time a novel erbium(III) voltammetric ion‐selective nanocomposite carbon‐paste electrode was introduced based on the concept of ion transfer at the interface between two immiscible electrolyte solutions. N′‐(2‐hydroxy‐1,2‐diphenylethylidene) benzohydrazide (HDB) was used as a selective ionophore in the composition of the carbon paste. The ionophore facilitates transfer of Er(III) from the aqueous solution to the room temperature ionic liquid (RTIL) phase after reduction of the redox probe to maintain charge neutrality. The plot of the peak potential versus the logarithm of the concentration exhibits a Nernstian response (19.9±0.2 mV decade?1) toward Er(III) in the range of 7.5×10?7–1.0×10?1 mol L?1 with detection limit of 5.0×10?7 mol L?1. The proposed sensor shows a fast response time of about 5 s.  相似文献   

13.
Simultaneous determination of dihydroxybenzene isomers was investigated at a multi‐wall carbon nanotubes (MWCNTs)/β‐cyclodextrin composite modified carbon ionic liquid electrode in phosphate buffer solution (pH 7.0, 1/15 mol/L) in the presence of cationic surfactant cetylpyridinium bromide (CPB). With the great enhancement of surfactant CPB, the voltammetric responses of dihydroxybenzene isomers were more sensitive and selective. The oxidation peak potential of hydroquinone was about 0.024 V, catechol was about 0.140 V and resorcinol 0.520 V in differential pulse voltammetric (DPV) measurements, which indicated that the dihydroxybenzene isomers could be separated entirely. The electrode showed wide linear behaviors in the range of 1.2×10?7–2.2×10?3, 7.0×10?7–1.0×10?3, 2.6×10?6–9.0×10?4 mol/L for hydroquinone, catechol and resorcinol, respectively. And the detection limits of the three dihydroxybenzene isomers were 4.0×10?8, 8.0×10?8, 9.0×10?7 mol/L, respectively. The proposed method could be applied to the determination of dihydroxybenzene isomers in artificial wastewater, and the recovery was from 97.4% to 104.2%.  相似文献   

14.
A room temperature ionic liquid (IL) 1‐butyl‐3‐methylimidazolium hexafluorophosphate functionalized graphene (GE) was prepared and a hydrogen peroxide (H2O2) biosensor was fabricated by immobilizing hemoglobin (Hb) into the IL‐GE composite film. UV‐visible and Fourier transform infrared spectra of the composite film indicated that Hb retained its native structure in the film. Electrochemical investigation of the biosensor showed a pair of well‐defined, quasi‐reversible redox peaks with Epa=?0.209 V and Epc= ?0.302 V (vs. SCE) in pH 7.0 phosphate buffer solution at the scan rate of 100 mV/s. To the reduction of H2O2, the biosensor had a good linear range from 8.0×10?7 to 1.8×10?4 mol/L with a detection limit of 3.0×10?7 mol/L. The apparent Michaelis‐Menten constant KappM was estimated to be 3.4×10?5 mol/L.  相似文献   

15.
《Electroanalysis》2006,18(3):291-297
Selected from a series of structurally related heteroaromatic thiols, a newly synthesized reagent 2‐amino‐5‐mercapto‐[1,3,4] triazole (MATZ) was used to fabricate self‐assembled monolayers (SAMs) on gold electrode for the first time. The MATZ/Au SAMs was characterized by electrochemical methods and scanning electronic microscopy (SEM). In 0.04 mol/L Britton–Robinson buffer solution (pH 5), the electrochemical behavior of dopamine showed a quasireversible process at the MATZ/Au SAMs with an electrode kinetic constant 0.1049 cm/s. However, the electrochemical reaction of uric acid at the SAMs electrode showed an irreversible oxidation process, the charge‐transfer kinetics of uric acid was promoted by the SAMs. By Osteryoung square‐wave voltammetry (OSWV), the simultaneous determination of dopamine and uric acid can be accomplished with an oxidation peak separation of 0.24 V, the peak current of dopamine and uric acid were linearly to its concentration in the range of 2.5×10?6–5.0×10?4 mol/L for dopamine and 1×10?6–1×10?4 mol/L for uric acid with a detection limit of 8.0×10?7 mol/L for dopamine and 7.0×10?7 mol/L for uric acid. The MATZ/Au SAMs electrode was used to detect the content of uric acid in real urine and serum sample with satisfactory results.  相似文献   

16.
A novel analytical approach for quantitative measurement of butylated hydroxyanisole (BHA) is dis‐ cussed in this paper. Such a method depends on the inhibitory effect of BHA on a Briggs‐Rauscher (B‐R) oscillating reaction. Unlike the classical B‐R system which involves Mn2+ as the catalyst, such a B‐R sys‐ tem is catalyzed by a macrocyclic nickel (II) complex [NiL](ClO4)2, where L in the complex is an unsatu‐ rated ligand 5,7,7,12,14,14‐hexemethyl‐1,4,8,11‐tetraazacyclotetradeca‐4,11‐diene. By perturbation of BHA on the system, the oscillation was inhibited in the presence trace amounts of BHA and the inhibition time was found to be proportional to the concentration of BHA over the range 1.00×10?7–1.20×10?4 mol/L. Two calibration curves were obtained: the first linear regression is over the range of 1.00×10?7–2.00×10?6 mol/L, and the second linear regression is over the range between 2.00×10?6 and 1.20×10?4 mol/L, with a lowest limit of detection of 4.00×10?8 mol/L. UV spectra measurements were employed to clarify the possible perturbation mechanism caused by BHA on the B‐R oscillating reaction.  相似文献   

17.
Chuanyin Liu  Jiming Hu 《Electroanalysis》2008,20(10):1067-1072
Hemoglobin was entrapped in composite electrodeposited chitosan‐multiwall carbon nanotubes (MCNTs) film by assembling gold nanoparticles and hemoglobin step by step. In phosphate buffer solution (pH 7), a pair of well‐defined and quasireversible redox peaks appeared with formal potential at ?0.289 V and peak separation of 100 mV. The redox peaks respected for the direct electrochemistry of hemoglobin at the surface of chitosan‐MCNTs‐gold nanoparticles modified electrode. The parameters of experiments have also been optimized. The composite electrode showed excellent electrocatalysis to peroxide hydrogen and oxygen, the peak current was linearly proportional to H2O2 concentration in the range from 1×10?6 mol/L to 4.7×10?4 mol/L with a detection limit of 5.0×10?7 mol/L, and this biosensor exhibited high stability, good reproducibility and better selectivity. The biosensor showed a Michaelis–Menten kinetic response as H2O2 concentration is larger than 5.0×10?4 mol/L, the apparent Michaelis–Menten constant for hydrogen peroxide was calculated to be 1.61 μmol/L.  相似文献   

18.
The interaction of gallocyanine (GC) with double‐stranded DNA (dsDNA) in pH 3.5 Tris‐HCl buffer solution was investigated by electrochemical methods and spectrophotometric methods as well. In the potential scan range of ‐0.25 ? +0.18 V(vs. SCE), GC had a couple of well‐defined redox peaks at ‐0.022 V and ‐0.069 V on a cyclic voltammogram at the scan rate of 100.0 mV/s, respectively. After the addition of dsDNA into the GC solution, the redox‐peak currents decreased obviously and the peak potentials shifted positively. The results demonstrated that GC binding to DNA was caused by intercalation. Electrochemical parameters such as the electron number (n), the charge transfer coefficient (α) and the electrochemical reaction standard rate constant (ks) were calculated and compared in the absence and presence of dsDNA. Almost unchanged values of the electrochemical parameters after adding dsDNA showed that non‐electroactive complexes were formed when GC interacted with DNA. The results indicated that the decrease of the redox‐peak currents was caused by the decrease of the free concentration of GC in the reaction solution. The binding constant and binding ratio were investigated by spectrophotometric methods. DNA concentration can be determined by the decrease of the peak current of GC. The linear range for dsDNA was in the range of 1.45 × 10?7 ? 1.45 × 10?6mol/Land 1.45 × 10?6 ? 1.45 × 10?5 mol/L, respectively with the linear regression equation as ΔiP (10?7 A) = 0.037 + 0.018C (10?7mol/L), and ΔiP (10?7 A) = 0.25 + 0.041C (10?6mol/L), respectively, and the detection limit (3σ) was 1.13 × 10?7 mol/L.  相似文献   

19.
The purpose of this paper is to develop an electroanalytical method based on square‐wave voltammetry (SWV) for the determination of the solvent blue 14 (SB‐14) in fuel samples. The electrochemical reduction of SB‐14 at glassy carbon electrode in a mixture of Britton‐Robinson buffer with N,N‐dimethylformamide (1 : 1, v/v) presented a well‐defined peak at?0.40 V vs. Ag/AgCl. All parameters of the SWV technique were optimized and the electroanalytical method presented a linear response from 1.0×10?6 to 6.0×10?6 mol L?1 (r=0.998) with a detection limit of 2.90×10?7 mol L?1. The developed method was successfully utilized in the quantification of the dye SB‐14 in kerosene and alcohol samples with average recovery from 93.00 to 98.10%.  相似文献   

20.
Introduction  Ionchromatography (IC)hasbeenrecognizedasausefulmethodfortheseparationofinorganicanionsandcationssinceitsintroductionbySmalletal .in 1975 .1AsignificanttrendinthedevelopmentofICmethodissearchforsensitiveanduniversaldetectionmethods .Themaindet…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号