首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction Fe(CN)5(4‐CNpy)3− + S2O82− (4‐CNpy=4‐cyanopyridine) was studied in aqueous salt solutions in the presence of several electrolytes as well as in anionic, cationic, and nonionic surfactant solutions. In aqueous salt solutions the noncoulombic interactions seem to be important in determining the positive salt effects observed. The salting effects are influencing the activity coefficients of any participant in the reaction, including those ion pairs which can be formed between the anionic reagents and the cations which come from the added salts. The changes in surfactant concentration in anionic and nonionic surfactant solutions do not affect the reaction rate, which is similar to that in pure water at the same ionic strength. In cationic micellar solutions an increase in the rate constant compared to that in pure water is found; the reaction rate decreasing when the surfactant concentration increases. The kinetic trends can be explained assuming that the reagents are totally bound to the micelles and, therefore, an increase in the surfactant concentration results in a decrease in the reagent concentrations at the micellar phase and thus in a decrease in the observed rate constant. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet: 31: 229–235, 1999  相似文献   

2.
The redox reaction Br + BrO3 has been studied in aqueous zwitterionic micellar solutions of N‐tetradecyl‐N, N‐dimethyl‐3‐ammonio‐1‐propanesulfonate, SB3‐14, and N‐hexadecyl‐N,N‐dimethyl‐3‐ammonio‐1‐propanesulfonate, SB3‐16. A simple expression for the observed rate constant, kobs, based on the pseudophase model, could explain the influences of changes in the surfactant concentration on kobs. The kinetic effect of added NaClO4 on the reaction rate in SB3‐14 micellar solutions has also been studied. They were rationalized by considering the binding of the perchlorate anions to the sulfobetaine micelles and their competition with the reactive bromide ions for the micellar surface. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 388–394, 2000  相似文献   

3.
The Zintl anion (Ge2As2)2? represents an isostructural and isoelectronic binary counterpart of yellow arsenic, yet without being studied with the same intensity so far. Upon introducing [(PPh3)AuMe] into the 1,2‐diaminoethane (en) solution of (Ge2As2)2?, the heterometallic cluster anion [Au6(Ge3As)(Ge2As2)3]3? is obtained as its salt [K(crypt‐222)]3[Au6(Ge3As)(Ge2As2)3]?en?2 tol ( 1 ). The anion represents a rare example of a superpolyhedral Zintl cluster, and it comprises the largest number of Au atoms relative to main group (semi)metal atoms in such clusters. The overall supertetrahedral structure is based on a (non‐bonding) octahedron of six Au atoms that is face‐capped by four (GexAs4?x)x? (x=2, 3) units. The Au atoms bind to four main group atoms in a rectangular manner, and this way hold the four units together to form this unprecedented architecture. The presence of one (Ge3As)3? unit besides three (Ge2As2)2? units as a consequence of an exchange reaction in solution was verified by detailed quantum chemical (DFT) calculations, which ruled out all other compositions besides [Au6(Ge3As)(Ge2As2)3]3?. Reactions of the heavier homologues (Tt2Pn2)2? (Tt=Sn, Pb; Pn=Sb, Bi) did not yield clusters corresponding to that in 1 , but dimers of ternary nine‐vertex clusters, {[AuTt5Pn3]2}4? (in 2 – 4 ; Tt/Pn=Sn/Sb, Sn/Bi, Pb/Sb), since the underlying pseudo‐tetrahedral units comprising heavier atoms do not tend to undergo the said exchange reactions as readily as (Ge2As2)2?, according to the DFT calculations.  相似文献   

4.
The title compound, [(S)‐2‐(anilino­methyl)­pyrrolidine‐N,N′]‐chloro(η6para‐cymene)­ruthenium(II) chloride, [RuCl‐(C10H14)(C11H16N2)]Cl, has been synthesized by the reaction of [RuCl2(p‐cymene)]2 (p‐cymene is para‐iso­propyl­toluene) with (S)‐2‐(anilinomethyl)­pyrrolidine in triethyl­amine/2‐propanol. The Ru atom is in a pseudo‐tetrahedral environment coordinated by a chloride ligand, the aromatic hydro­carbon is linked in a η6 manner and the amine is linked via its two N atoms. The chloride anion is involved in hydrogen bonding with the di­amine moieties through N—H?Cl interactions, with N?Cl distances of 3.273 (4) and 3.352 (4) Å.  相似文献   

5.
Compelling evidence has been found for the formation and direct detection of the cyclopentazole anion (cyclo‐N5?) in solution. The anion was prepared from phenylpentazole in two steps: reduction by an alkali metal to form the phenylpentazole radical anion, followed by thermal dissociation to yield cyclo‐N5?. The reaction solution was analyzed by HPLC coupled with negative mode mass spectrometry. A signal with m/z 70 was eluted about 2.1 min after injection of the sample. Its identification as N5 was supported by single and double labeling with 15N, which yielded signals at m/z=71 and 72, respectively, with identical retention times in the HPLC column. MS/MS analysis of the m/z=70 signal revealed a dissociation product with m/z=42, which can be assigned to N3?. To our knowledge this is the first preparation of cyclo‐N5? in the bulk. The compound is indefinitely stable at temperatures below ?40 °C, and has a half‐life of a few minutes at room temperature.  相似文献   

6.
Selective crystallization of sulfate with a simple bis‐guanidinium ligand, self‐assembled in situ from terephthalaldehyde and aminoguanidinium chloride, was employed as an effective way to separate the highly hydrophilic sulfate anion from aqueous solutions. The resulting bis‐iminoguanidinium sulfate salt has exceptionally low aqueous solubility (Ksp=2.4×10?10), comparable to that of BaSO4. Single‐crystal X‐ray diffraction analysis showed the sulfate anions are sequestered as [(SO4)2(H2O)4]4? clusters within the crystals. Variable‐temperature solubility measurements indicated the sulfate crystallization is slightly endothermic (ΔHcryst=3.7 kJ mol?1), thus entropy driven. The real‐world utility of this crystallization‐based approach for sulfate separation was demonstrated by removing up to 99 % of sulfate from seawater in a single step.  相似文献   

7.
The closo‐dodecaborate [B12H12]2? is degraded at room temperature by oxygen in an acidic aqueous solution in the course of several weeks to give B(OH)3. The degradation is induced by Ag2+ ions, generated from Ag+ by the action of H2S2O8. Oxa‐nido‐dodecaborate(1?) is an intermediate anion, that can be separated from the reaction mixture as [NBzlEt3][OB11H12] after five days in a yield of 18 %. The action of FeCl3 on the closo‐undecaborate [B11H11]2? in an aqueous solution gives either [B22H22]2? (by fusion) or nido‐B11H13(OH)? (by protonation and hydration), depending on the concentration of FeCl3. In acetonitrile, however, [B11H11]2? is transformed into [OB11H12]? by Fe3+ and oxygen. The radical anions [B12H12] ˙ ? and [B11H11] ˙ ? are assumed to be the primary products of the oxidation with the one‐electron oxidants Ag2+ and Fe3+, respectively. These radical anions are subsequently transformed into [OB11H12]? by oxygen. The crystal structure analysis shows that the structure of [OB11H12]? is derived from the hypothetical closo‐oxaborane OB12H12 by removal of the B3 vertex, leaving a non‐planar pentagonal aperture with a three‐coordinate O vertex, as predicted by NMR spectra and theory.  相似文献   

8.
The asymmetric unit of the title compound, {[Cu(CO3)(C14H14N4)1.5]·0.5C14H14N4·5H2O}n, contains one CuII cation in a slightly distorted square‐pyramidal coordination environment, one CO32− anion, one full and two half 1,4‐bis(imidazol‐1‐ylmethyl)benzene (bix) ligands, one half‐molecule of which is uncoordinated, and five uncoordinated water molecules. One of the coordinated bix ligands and the uncoordinated bix molecule are situated about centers of symmetry, located at the centers of the benzene rings. The coordinated bix ligands link the copper(II) ions into a [Cu(bix)1.5]n molecular ladder. These molecular ladders do not form interpenetrated ladders but are arranged in an ABAB parallel terrace, i.e. with the ladders arranged one above another, with sequence A translated with respect to B by 8 Å. To best of our knowledge, this arrangement has not been observed in any of the molecular ladder frameworks synthesized to date. The coordination environment of the CuII atom is completed by two O atoms of the CO32− anion. The framework is further strengthened by extensive O—H...O and O—H...N hydrogen bonds involving the water molecules, the O atoms of the CO32− anion and the N atoms of the bix ligands. This study describes the first example of a molecular ladder coordination polymer based on bix and therefore demonstrates further the usefulness of bix as a versatile multidentate ligand for constructing coordination polymers with interesting architectures.  相似文献   

9.
Each of the two novel title transition metal coordination polymers, namely catena‐poly[[bis{[tris(2‐pyridylmethyl)amine]cobalt(II)}‐μ4‐7,7,8,8‐tetracyanoquinodimethanide(2−)] bis[7,7,8,8‐tetracyanoquinodimethanide(1−)] methanol disolvate], {[Co2(C12H4N4)(C18H18N4)2](C12H4N4)2·2CH3OH}n, (I), and catena‐poly[[[[tris(2‐pyridylmethyl)amine]iron(II)]‐μ2‐7,7,8,8‐tetracyanoquinodimethanide(2−)] methanol solvate], {[Fe(C12H4N4)(C18H18N4)]·CH3OH}n, (II), contains η4‐TPA and cis‐bridging TCNQ2− ligands [TPA is tris(2‐pyridylmethyl)amine and TCNQ is 7,7,8,8‐tetracyanoquinodimethane], but the two compounds adopt entirely different structural motifs. Compound (I) consists of a ribbon coordination polymer featuring μ4‐TCNQ2− radical anion ligands bridging four different octahedral CoII centers. Each formula unit of the polymer is flanked by two uncoordinated TCNQ anions and two methanol solvent molecules. All three TCNQ anions have crystallographic inversion symmetry. In (II), the 21 symmetry operator generates a one‐dimensional zigzag chain of octahedral FeII centers with μ2‐TCNQ2− bridges. A methanol solvent molecule forms hydrogen bonds to one of the terminal N atoms of the bridging TCNQ2− dianion. To the best of our knowledge, these are the first examples of one‐dimensional coordination polymers forming from cis coordination of two TCNQ ligands to octahedral metal centers.  相似文献   

10.
The title complex, {[Cu2(C14H16N3O4)(C6H6N4S2)]NO3·0.6H2O}n, is a one‐dimensional copper(II) coordination polymer bridged by cis‐oxamide and carboxylate groups. The asymmetric unit is composed of a dinuclear copper(II) cation, [Cu2(dmapob)(dabt)]+ {dmapob is N‐(2‐carboxylatophenyl)‐N′‐[3‐(dimethylamino)propyl]oxamidate and dabt is 2,2′‐diamino‐4,4′‐bithiazole}, one nitrate anion and one partially occupied site for a solvent water molecule. The two CuII ions are located in square‐planar and square‐pyramidal coordination environments, respectively. The separations of the Cu atoms bridged by oxamide and carboxylate groups are 5.2053 (3) and 5.0971 (4) Å, respectively. The complex chains are linked by classical hydrogen bonds to form a layer and then assembled by π–π stacking interactions into a three‐dimensional network. The influence of the terminal ligand on the structure of the complex is discussed.  相似文献   

11.
In the title 1/2/2 adduct, C4H12N22+·2C6H3N2O5?·2H2O, the dication lies on a crystallographic inversion centre and the asymmetric unit also has one anion and one water mol­ecule in general positions. The 2,4‐di­nitro­phenolate anions and the water mol­ecules are linked by two O—H?O and two C—H?O hydrogen bonds to form molecular ribbons, which extend along the b direction. The piperazine dication acts as a donor for bifurcated N—H?O hydrogen bonds with the phenolate O atom and with the O atom of the o‐nitro group. Six symmetry‐related molecular ribbons are linked to a piperazine dication by N—H?O and C—H?O hydrogen bonds.  相似文献   

12.
The two independent bis(3,5‐di­methyl­pyrazole)silver(I) cations in crystalline [Ag(C5H7N2)2]NO3 display N—Ag—N angles of 175.51 (14) and 174.44 (13)°, and an average Ag—N distance of 2.124 (5) Å. The nitrate anion is situated between [Ag(C5H7N2)2]+ units and interacts via hydrogen bonds with the NH groups. The two 3,5‐di­methyl­pyrazole ligands are trans about the silver center. Only a small deviation from linearity is observed in the coordination around silver.  相似文献   

13.
The kinetics and mechanism of the reaction of SIV (SO32?+HSO3?) with a ruthenium(VI) nitrido complex, [(L)RuVI(N)(OH2)]+ (RuVIN, L=N,N′‐bis(salicylidene)‐o‐cyclohexyldiamine dianion), in aqueous acidic solutions are reported. The kinetic results are consistent with parallel pathways involving oxidation of HSO3? and SO32? by RuVIN. A deuterium isotope effect of 4.7 is observed in the HSO3? pathway. Based on experimental results and DFT calculations the proposed mechanism involves concerted N?S bond formation (partial N‐atom transfer) between RuVIN and HSO3? and H+ transfer from HSO3? to a H2O molecule.  相似文献   

14.
In this study, the titanyl and vanadyl phthalocyanine (Pc) salts (Bu4N+)2[MIVO(Pc4?)]2? (M=Ti, V) and (Bu3MeP+)2[MIVO(Pc4?)]2? (M=Ti, V) with [MIVO(Pc4?)]2? dianions were synthesized and characterized. Reduction of MIVO(Pc2?) carried out with an excess of sodium fluorenone ketyl in the presence of Bu4N+ or Bu3MeP+ is exclusive to the phthalocyanine centers, forming Pc4? species. During reduction, the metal +4 charge did not change, implying that Pc is an non‐innocent ligand. The Pc negative charge increase caused the C?N(pyr) bonds to elongate and the C?N(imine) bonds to alternate, thus increasing the distortion of Pc. Jahn–Teller effects are significant in the [eg(π*)]2 dianion ground state and can additionally distort the Pc macrocycles. Blueshifts of the Soret and Q‐bands were observed in the UV/Vis/NIR when MIVO(Pc2?) was reduced to [MIVO(Pc . 3?)] . ? and [MIVO(Pc4?)]2?. From magnetic measurements, [TiIVO(Pc4?)]2? was found to be diamagnetic and (Bu4N+)2[VIVO(Pc4?)]2? and (Bu3MeP+)2[VIVO(Pc4?)]2? were found to have magnetic moments of 1.72–1.78 μB corresponding to an S=1/2 spin state owing to VIV electron spin. As a result, two latter salts show EPR signals with VIV hyperfine coupling.  相似文献   

15.
The 1:1 adduct of N,N′‐bis(2‐chlorobenzylidene)ethylenediamine (cb2en) with copper(I) chloride proves to be an ionic compound with CuI‐centred cations and anions, [Cu(C16H14Cl2N2)2][CuCl2]·CH3CN. In the cation, the CuI atom has a flattened tetrahedral coordination geometry, with a small bite angle for the chelating ligands, which form a double‐helical arrangement around the metal centre. The anion is almost linear, as expected. The packing of the cations involves intermolecular π–π interactions, which lead to columns of translationally related cations along the shortest unit‐cell axis, with anions and solvent molecules in channels between them.  相似文献   

16.
Reactions of ZnI2L2 (where L=[HC(PPh2NPh)]) with solutions of the Zintl phase K4Ge9 in liquid ammonia lead to retention of the Zn−Zn bond and formation of the anion [(η4‐Ge9)Zn−Zn(η4‐Ge9)]6−, representing the first complex with a Zn−Zn unit carrying two cluster entities. The trimeric anion [(η4‐Ge9)Zn{μ211Ge9)}Zn(η4‐Ge9)]8− forms as a side product, indicating that oxidation reactions also take place. The reaction of Zn2Cp*2 (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with K4Ge9 in ethylenediamine yielded the linear polymeric unit {[Zn[μ241Ge9)]}2− with the first head‐to‐tail arrangement of ten‐atom closo ‐clusters. All anions were obtained and structurally characterized as [A (2.2.2‐crypt)]+ salts (A =K, Rb). Copious computational analyses at a DFT‐PBE0/def2‐TZVPP/PCM level of theory confirm the experimental structures and support the stability of the two hypothetical ten vertex cluster fragments closo ‐[Ge9Zn]2− and (paramagnetic) [Ge9Zn]3−.  相似文献   

17.
The structure of the title compound, C14H19N2+·C9H3Cl6O4?·H2O, consists of singly ionized 1,4,5,6,7,7‐hexachlorobicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxylic acid anions and protonated 1,8‐bis(dimethylamino)naphthalene cations. In the (8‐dimethylamino‐1‐napthyl)dimethylammonium cat­ion, a strong disordered intramolecular hydrogen bond is formed with N?N = 2.589 (3) Å. The geometry and occupancy obtained in the final restrained refinement suggest that the disordered hydrogen bond may be asymmetric. Water mol­ecules link the anion dimers into infinite chains via hydrogen bonding.  相似文献   

18.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

19.
The title dinuclear di‐μ‐oxo‐bis­[(1,4,8,11‐tetra­aza­cyclo­tetra­decane‐κ4N)­manganese(III,IV)] diperchlorate nitrate complex, [Mn2O2(C10H24N4)2](ClO4)2(NO3) or [(cyclam)Mn­O]2(ClO4)2(NO3), was self‐assembled by the reaction of Mn2+ with 1,4,8,11‐tetra­aza­cyclo­tetra­decane in aqueous media. The structure of this compound consists of a centrosymmetric binuclear [(cyclam)MnO]3+ unit, two perchlorate anions and one nitrate anion. While the low‐temperature electron paramagnetic resonance spectra show a typical 16‐line signal for a di‐μ‐oxo MnIII/MnIV dimer, the magnetic susceptibility studies also confirm a characteristic antiferromagnetic coupling between the electronic spins of the MnIV and MnIII ions.  相似文献   

20.
The asymmetric unit of the title coordination polymer, [Gd2(C7H4O5S)2(C2O4)(H2O)6]n or [Gd(2‐SB)(ox)0.5(H2O)3]2n (2‐SB is 2‐sulfonatobenzoate and ox is oxalate), (I), consists of one GdIII ion, one 2‐SB anion, three coordinated water molecules and one half of an ox ligand. The ox ligand is located on a crystallographic inversion centre. The GdIII centre shows a distorted tricapped trigonal–prismatic coordination formed by nine O atoms from two 2‐SB anions, one ox ligand and three coordinated water molecules. The carboxylate and sulfonate groups of the 2‐SB anions adopt μ2‐η12 and μ1‐η001 coordination modes to link two GdIII ions, generating a centrosymmetric binuclear [Gd2(2‐SB)2(H2O)6]2− subunit. The ox ligand acts as a bridge, linking the binuclear [Gd2(2‐SB)2(H2O)6]2− subunits into a one‐dimensional chain structure parallel to the b axis. Furthermore, extensive O—H...O hydrogen bonds connect the chains into a three‐dimensional supramolecular architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号