首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The co‐channel interference problem in wireless mesh networks (WMN) is extremely serious due to the heavy aggregated traffic loads and limited available channels. It is preferable for mesh routers to dynamically switch channels according to the accurate estimation of co‐channel interference level in the neighborhood. Most developed interference estimation schemes, however, do not consider the impact of interface switching. Furthermore, the interference in wireless networks has been extensively considered as an all‐or‐nothing event. In this paper, we develop a weighted interference estimation scheme (WIES) for interface‐switching WMN. WIES takes a new version of multi‐interface conflict graph that considers the impacts of frequent interface switching as the interference relationship estimation scheme. Besides, WIES uses a weight to estimate the interference level between links. The weight utilizes two empirical functions to denote the impacts of the relative distance and characteristics of traffic loads in WMN. Extensive NS2 simulations show that WIES achieves significant performance improvements, especially when the interference level of the network is high. We also validate that the interference level of networks is affected by several system parameters such as the number of available channels and the ratio between interference range and transmission range. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with channel modelling for satellite personal communications and with the associated problem of performance evaluation. Channel characteristics for personal communications tend to differ from those traditionally accepted for vehicular communications. In this paper we report on modelling aspects for both wideband and narrowband personal communications. Then we consider performance evaluation for low-altitude earth orbit (LEO) satellite systems in terms of bit error probability and outage probability. To evaluate the outage probability for LEO systems, a tight and simple upper bound is finally provided. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Co‐channel interference seriously influences the throughput of a wireless mesh network. This study proposes an end‐to‐end channel allocation scheme (EECAS) that extends the radio‐frequency‐slot method to minimize co‐channel interference. The EECAS first separates the transmission and reception of packets into two channels. This scheme can then classify the state of each radio‐frequency‐slot as transmitting, receiving, interfered, free, or parity. A node that initiates a communication session with a quality of service requirement can propagate a channel allocation request along the communication path to the destination. By checking the channel state, the EECAS can determine feasible radio‐frequency‐slot allocations for the end‐to‐end path. The simulation results in this study demonstrate that the proposed approach performs well in intra‐mesh and inter‐mesh communications, and it outperforms previous channel allocation schemes in end‐to‐end throughput. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Conventional trisectored cellular systems have not taken full advantages of antenna directivities to enhance frequency reuse efficiency. A novel Channel Alternation and Rotation (CAR) scheme is proposed to coordinate channel assignments with antenna directivities. CAR employs a multi-interval cell-reuse layout. Each cell type is allocated extra channel set(s) to provide network designers the flexibility to assign channels avoiding nearest front lobe interference to enhance the carrier to interference ratio (C/I). CAR allows deployment of smaller and non-integer reuse factors based on C/I requirements, thus increasing channel capacity. Since current base station equipment is utilized, no additional costs are introduced.  相似文献   

5.
Orthogonal frequency division multiple access (OFDMA) is a promising technique for high data rate communications in future cellular systems. Since frequency resources are universally reused in every cell in a system, a typical OFDMA system tries to maximize the spectral efficiency. Users located near the cell‐edge tend to have the weakest signal strength. So they might experience severe inter‐cell interferences (ICIs). In this paper, we propose a sequential frequency reuse (SqFR) that reduces ICIs by a sequential sub‐channel allocation. By giving more power to sub‐carriers allocated to cell‐edge users, our SqFR significantly enhances the performance of cell‐edge users. The performance of the proposed SqFR is investigated via the analysis and simulations. Simulation results show that proposed SqFR improves the performance of cell‐edge users in an OFDMA system under both homogeneous and heterogeneous traffic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The outage performance of the amplify‐and‐forward relaying strategies over mutually uncorrelated extended generalized‐K fading channels is addressed in this paper. The attention is dedicated to the analyses of the noise‐limited and also interference‐limited environment. The new analytical expression for outage probability of observed relaying system in the presence of thermal noise is derived using the method for approximating equivalent signal‐to‐noise ratio. In addition, the outage performance is studied for the dual‐hop system when only the single dominant co‐channel interference is inherent at the relay and destination node. The correctness of the proposed mathematical derivations is verified by simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This paper considers the impact of dual polarization adoption on the performance for a fixed wireless access (FWA) network. The major limiting factor of the performance in these systems is co‐channel interference (CCI) originating from intracell and intercell concurrent transmissions. The proposed framework combines an appropriate time domain radio resource allocation technique with a dual polarization pattern to mitigate CCI and enhance the obtained signal to interference plus noise ratio (SINR). Simulation results present the performance of the proposed framework against various terrain categories and sector antenna characteristics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The efficient management of wireless resource is essential to the success of wireless systems. While power control is traditionally considered as a means to counteract the detrimental effects of channel fading, it is also a flexible mechanism to provide Quality of Service to individual users, and can be used as a platform for radio resource management. In this paper, we review the developments of distributed power control and related resource management problems in cellular wireless systems. We highlight the feasibility issue in a power‐controlled system, which enables us to push the system toward high efficiency, and prevent the system from collapsing at the same time. Considering the unique features of multimedia traffic to be supported in future wireless systems, we also review power and rate control schemes proposed for wireless data, and present a framework for utility‐based power control as a possible candidate for distributed power control of multimedia wireless systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The fundamental issues in mobile cognitive radio ad‐hoc networks are the selection of the optimal stable paths between nodes and proper assignment of the frequency channels/time slots (communication segments) to the links. In this paper, a joint load balanced stable routing and communication segment assignment algorithm is proposed that considers jointly the mobility prediction, mitigating the co‐channel interference and energy consumption. The novelty of the proposed algorithm lies in the increasing of the path stability, which benefits from the maximum link lifetime parameter and introduced weighting function to keep routes away from the PU's region. This avoids the negative impacts on the PUs' operations and decreases the conflict of the cognitive nodes. In the proposed algorithm, the concept of load balancing is considered that yields in the balancing energy consumption in the network, improving the network performance and distributing traffic loads on all available channels. The effectiveness of the proposed algorithm is verified by evaluating the aggregate interference energy, average end‐to‐end delay, goodput, and the energy usage per packet under 6 scenarios. The results show that the performance of the proposed algorithm is significantly better than the recently proposed joint stable routing and channel assignment protocol.  相似文献   

11.
Multi‐input multi‐output orthogonal frequency‐division multiplexing (MIMO‐OFDM) has been actively studied for high data rate communications over the bandwidth‐limited underwater acoustic (UWA) channels. Unlike existing receivers that treat the intercarrier interference (ICI) as additive noise, in this paper, the proposed receiver considers ICI explicitly together with the co‐channel interference (CCI) due to parallel transmissions in MIMO‐OFDM. Using a recently developed progressive receiver framework, the proposed receiver starts with low‐complexity ICI‐ignorant processing and then progresses to ICI‐aware processing with increasing ICI levels. The key components of the proposed receiver include the following: (1) compressed sensing‐based sparse channel estimation, (2) soft‐input soft‐output minimum mean square error/Markov chain Monte Carlo detector for interference mitigation, and (3) soft nonbinary low‐density parity check decoding. In addition to simulation, we use real data from the Surface Processes and Acoustic Communications Experiment 2008 (SPACE08) and the Mobile Acoustic Communications Experiment 2010 (MACE10) to verify the system performance, where the transmitter in SPACE08 was stationary and that in MACE10 was slowly moving. Simulation and experimental results show that explicitly addressing ICI and CCI significantly improves the performance of MIMO‐OFDM in UWA systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The frequency assignment problem will maintain its importance for several years, since future versions of legacy cellular systems, e.g., those of GSM, will continue to exist. This paper elaborates on an interference-oriented version of the frequency assignment problem. The objective function is associated with the interference levels that are imposed by the frequency allocation, while the constraints are related to the allocation of the frequencies required in each cell and the prevention of some unacceptable interference situations. The problem is formally stated, mathematically formulated and solved by means of computationally efficient heuristics. Finally, results are obtained and concluding remarks are made.  相似文献   

13.
卫星移动通信信道LR2模型及系统性能分析   总被引:2,自引:3,他引:2  
在对卫星移动通信信道传播特性进行分析的基础上,综合目前提出的各种卫星移动信道传播模型,提出了一种新的Lognormal—Rice—Rayleigh模型(简称LR^2模型)。从该模型可以推导到其它各种经典的卫星移动信道传播模型,并且具有良好的全波段特性(从UHF到Ka)和实际逼真度。还给出了LR^2模型从UHF到Ka各个波段的仿真效果和参数优化公式,全面分析了与信道模型有关的各种参数如电平通过率(LCR)、平均衰落时长(AFD)、相位分布、误码率、块差错率等,为信道模型的应用作了较全面的阐述。  相似文献   

14.
I present a novel analytical study of the signal‐to‐noise‐plus‐interference ratio (SNIR) for Ka‐band high throughput satellite uplink channels. The Ka‐band high throughput satellite systems employ frequency and polarization (color) reuse among the spot beams to achieve throughput increase many times the throughput of the system without reuse. However, color reuse also produces substantial co‐color interference and adding to it, tropospheric precipitation attenuation rises sharply in Ka‐band. The co‐color interference and precipitation induced fading vary randomly; they degrade the system performances. To assess the impact, I develop the uplink channel SNIR probability model in this study. Compared with the known studies of the same topic, this study takes the theoretic approach and is applicable to the urban users in particular. The model is feasible to implement and can provide accurate assessment of the channel SNIR performances statistically in theory for a wide array of system operational scenarios. The SNIR probability model is applied to a model spot beam system of 101 user beams to obtain and compare sample channel performances, which can be used for making system design choices at the early stage of a satellite project. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Tailored for wireless local area networks, the present paper proposes a cross‐layer resource allocation scheme for multiple‐input multiple‐output orthogonal frequency‐division multiplexing systems. Our cross‐layer resource allocation scheme consists of three stages. Firstly, the condition of sharing the subchannel by more than one user is studied. Secondly, the subchannel allocation policy which depends on the data packets’ lengths and the admissible combination of users per subchannel is proposed. Finally, the bits and corresponding power are allocated to users based on a greedy algorithm and the data packets’ lengths. The analysis and simulation results demonstrate that our proposed scheme not only achieves significant improvement in system throughput and average packet delay compared with conventional schemes but also has low computational complexity.  相似文献   

16.
Multi‐carrier technologies in general, and OFDM and MC‐CDMA in particular, are an integral part of the wireless landscape. In this second part of a two‐part survey, the authors present an innovative set of spreading codes known as CI codes, and demonstrate how these significantly increase performance and capacity in OFDM and MC‐CDMA systems, all the while eliminating PAPR concerns. Regarding OFDM: the spreading of each symbol over all N carriers using CI spreading codes (replacing the current one symbol per carrier strategy) are presented. CI codes are ideally suited for spreading OFDM since, when compared to traditional OFDM, CI‐based OFDM systems achieve the performance of coded OFDM (COFDM) while maintaining the throughput of uncoded OFDM, and, at the same time, eliminate PAPR concerns. When applied to MC‐CDMA, CI codes provide a simple means of supporting 2N users on N carriers while maintaining the performance of an N‐user Hadamard Walsh code MC‐CDMA system, i.e., CI codes double MC‐CDMA network capacity without loss in performance. The CI codes used in OFDM and MC‐CDMA systems are directly related to the CI pulse (chip) shapes used to enhance TDMA and DS‐CDMA (see part 1): hence, the CI approach provides a common hardware platform for today's multi‐carrier/multiple‐access technologies, enabling software radio applications. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
In two‐tier networks, which consist of macrocells and femtocells, femtocells can offload the traffic from macrocells thereby improving indoor signal coverage. However, the dynamic deployment feature of femtocells may result in signal interference due to limited frequency spectrum. The tradeoff between broad signal coverage and increased signal interference deserves further exploration for practical network operation. In this paper, dynamic frequency resource management is proposed to avoid both co‐tier and cross‐tier Orthogonal Frequency Division Multiple Access downlink interference and increase frequency channel utilization under co‐channel deployment. A graph‐based non‐conflict group discovery algorithm is proposed to discover the disjoint interference‐free groups among femtocells in order to avoid the co‐tier interference. A macrocell uses the femtocell gateway for frequency resource allocation among femtocells to avoid cross‐tier interference. We formulate the optimized frequency resource assignment as a fractional knapsack problem and solve the problem by using a greedy method. The simulation results show that the average data transfer rate can be increased from 21% to 60%, whereas idle rate and blocking rate are decreased in the range of and , respectively, as compared with conventional graph coloring and graph‐based dynamic frequency reuse schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper derives the asymptotic symbol error rate (SER) and outage probability of decode‐and‐forward (DF) cooperative communications over Rician fading channels. How to optimally allocate the total power is also addressed when the performance metric in terms of SER or outage probability is taken into consideration. Analysis reveals the insights that Rician factor has a great impact on the system performance as compared with the channel variance, and the relay–destination channel quality is of importance. In addition, the source–relay channel condition is irrelevant to the optimal power allocation design. Simulation and numerical evaluation substantiate the tightness of the asymptotic expressions in the high‐SNR regions and demonstrate the accuracy of our theoretical analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, we investigate the performance of a dual‐hop cooperative network over α?μ fading channels with the presence of co‐channel interference (CCI) at both the relay and destination nodes. Amplify‐and‐forward (AF) relaying is considered in the relay node. The upper bound of the signal‐to‐interference‐plus‐noise ratio (SINR) of the dual‐hop relay link is used to determine the system performance. The probability density function (PDF) and the cumulative distribution function (CDF) of the upper bound of the SINR are analyzed. The system performance is determined in terms of the outage and error probabilities. Numerical results are used to present the performance analysis of the system.  相似文献   

20.
Wang et al proposed cross‐layer resource allocation for orthogonal frequency division multiple access (OFDMA) video transmission systems. Unlike Wang et al, we add non‐orthogonal multiple access (NOMA) to the downlink OFDMA video transmission system and propose power allocation for users on each subcarrier (cluster) to minimize sum of video mean square error (MSE) to increase the peak signal‐to‐noise ratio (PSNR), the video quality. For OFDMA/NOMA video communication systems, we propose cross‐layer user clustering to reassign the subcarriers based on sum video distortion minimization and derive the optimal power allocation among NOMA users on the same subcarrier to minimize the sum video distortion. Numerical results show that the proposed scheme outperforms the previous OFDMA cross‐layer scheme by Wang et al by 2.2 to 4.5 dB in PSNR and previous OFDMA NOMA physical layer scheme by Ali et al by 2 to 4.4 dB in PSNR, when SNR = 15 dB, and the number of users is 6 to 12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号