首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Binuclear manganese(II) complexes with macrocyclic ligands have been synthesized by template Schiff base condensation of diethylenetriamine and pentane-2,4-dione or 1,3-diphenyl-propane-1,3-dione. Catalytic epoxidation of simple olefins with hydrogen peroxide and t-BHP were studied using the above manganese complexes in the presence of a base. The influence of reaction temperature, the additive methanol and the cocatalyst had been investigated. The major products of the oxidations were the epoxides. The new manganese complexes showed significant catalytic activities for the epoxidation of alkenes using hydrogen peroxide as oxidant and ammonium acetate as cocatalyst.  相似文献   

2.
Tong KH  Wong KY  Chan TH 《Organic letters》2003,5(19):3423-3425
[reaction: see text] Effective epoxidation of lipophilic alkenes using hydrogen peroxide was accomplished with the manganese sulfate/bicarbonate catalytic system in an ionic liquid at room temperature.  相似文献   

3.
The epoxidation of alkenes with 30% aqueous hydrogen peroxide is catalyzed efficiently by methyltrioxorhenium (MTO) in the presence of pyridine additives. The addition of 1-10 mol % of 3-cyanopyridine increases the system's efficiency for terminal and trans-disubstituted alkenes resulting in high isolated yields of the corresponding epoxides. The system allows for epoxidation of alkenes with various functional groups. Alkenes leading to acid-sensitive products are efficiently epoxidized using a mixture of pyridine and 3-cyanopyridine as additives. This method is operationally very simple and uses an environmentally benign oxidant. The effects of different pyridine additives on the alkene conversion and the catalyst lifetime are discussed.  相似文献   

4.
Olefin epoxidation provides an operative protocol to investigate the oxygen transfer process in nature. A novel manganese complex with a cross-bridged cyclam ligand, MnIV(Me2EBC)(OH)2(2+) (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane), was used to study the epoxidation mechanism with biologically important oxidants, alkyl hydroperoxides. Results from direct reaction of the freshly synthesized manganese(IV) complex, [Mn(Me2EBC)(OH)2](PF6)2, with various olefins in neutral or basic solution, and from catalytic epoxidation with oxygen-labeled solvent, H2 18O, eliminate the manganese oxo moiety, Mn(IV)=O, as the reactive intermediate and obviate an oxygen rebound mechanism. Epoxidations of norbornylene under different conditions indicate multiple mechanisms for epoxidation, and cis-stilbene epoxidation under atmospheric 18O2 reveals a product distribution indicating at least two distinctive intermediates serving as the reactive species for epoxidation. In addition to alkyl peroxide radicals as dominant intermediates, an alkyl hydroperoxide adduct of high oxidation state manganese(IV) is suggested as the third kind of active intermediate responsible for epoxidation. This third intermediate functions by the Lewis acid pathway, a process best known for hydrogen peroxide adducts. Furthermore, the tert-butyl peroxide adduct of this manganese(IV) complex was detected by mass spectroscopy under catalytic oxidation conditions.  相似文献   

5.
Neimann K  Neumann R 《Organic letters》2000,2(18):2861-2863
[reaction; see text] The catalytic electrophilic activation of hydrogen peroxide with transition metal compounds toward reaction with nucleophiles is a matter of very significant research and practical interest. We have now found that use of perfluorinated alcoholic solvents such as 1,1, 1,3,3,3-hexafluoro-2-propanol in the absence of catalysts allowed electrophilic activation of hydrogen peroxide toward epoxidation of alkenes and the Baeyer-Villiger oxidation of ketones.  相似文献   

6.
A simple catalytic system that uses commercially available manganese(II) perchlorate as the catalyst and peracetic acid as the oxidant is found to be very effective in the epoxidation of aliphatic terminal alkenes with high product selectivity at ambient temperature. Many terminal alkenes are epoxidised efficiently on a gram scale in less than an hour to give excellent yields of isolated product (>90 %) of epoxides in high purity. Kinetic studies with some C9-alkenes show that the catalytic system is more efficient in epoxidising terminal alkenes than internal alkenes, which is contrary to most commonly known epoxidation systems. The reaction rate for epoxidation decreases in the order: 1-nonene>cis-3-nonene>trans-3-nonene. ESI-MS and EPR spectroscopic studies suggest that the active form of the catalyst is a high-valent oligonuclear manganese species, which probably functions as the oxygen atom-transfer agent in the epoxidation reaction.  相似文献   

7.
The organocatalytic epoxidation of unactivated alkenes using aqueous hydrogen peroxide provides various indispensable products and intermediates in a sustainable manner. While formyl functionalities typically undergo irreversible oxidations when activating an oxidant, an atropisomeric two-axis aldehyde capable of catalytic turnover was identified for high-yielding epoxidations of cyclic and acyclic alkenes. The relative configuration of the stereogenic axes of the catalyst and the resulting proximity of the aldehyde and backbone residues resulted in high catalytic efficiencies. Mechanistic studies support a non-radical alkene oxidation by an aldehyde-derived dioxirane intermediate generated from hydrogen peroxide through the Payne and Criegee intermediates.

An atropisomeric two-axis aldehyde is capable of catalysing the organocatalytic epoxidation of unactivated alkenes using hydrogen peroxide as the oxidant.  相似文献   

8.
阳卫军 《分子催化》2012,(4):314-321
以苯乙烯、环己烯和反式二苯乙烯为烯烃底物,以双氧水、叔丁基过氧化氢和异丙苯过氧化氢为氧化剂,以苯环上对位和邻位氯取代的四苯基金属卟啉为仿生催化剂,对烯烃的催化环氧化反应进行了对比研究.讨论了不同氯取代位的四苯基金属卟啉对烯烃环氧化性能的影响.实验结果表明,在没有助催化剂存在下,邻位氯代的四(2,6-二氯苯基)铁(锰)卟啉对烯烃的环氧化具有优异的催化性能,烯烃底物的转化率和环氧选择性都比对位氯代的四苯基铁(锰)卟啉高,且反应条件温和.其中FeⅢ(TDCPP)Cl的催化性能最好,环氧化选择性最高,催化氧化苯乙烯时,环氧苯乙烷的选择性达到了90.4%.相同金属离子不同配体的金属卟啉传递氧原子的能力为TDCPP>T(p-Cl)PP>TPP.氧化剂的结构对环氧化物的选择性有较大影响.过氧键连有吸电子基团的异丙苯过氧化氢对环氧化物的选择性最高.根据实验结果,对金属卟啉催化环氧化机理进行了分析.  相似文献   

9.
[reaction: see text] Electrophilic activation of hydrogen peroxide can be achieved in acidic alcohol solvents without the need for a metal catalyst. This concept is illustrated by the epoxidation of alkenes with H(2)O(2) employing phenol as a solvent. It is proposed that intermolecular hydrogen bonding between H(2)O(2) and phenol activates H(2)O(2) for oxygen-atom transfer. In this interaction, the role of phenol is purely catalytic.  相似文献   

10.
In the absence of organic solvent, allyl chloride was epoxidized with aqueous hydrogen peroxide catalyzed by a heteropolyphosphatotungstate catalyst with very good activity and recycling activity. Under optimized conditions, an epichlorohydrin yield of 88.7% was achieved in the first run; after two recycles, the epichlorohydrin yield remained still above 85.0%. Various factors affecting the catalytic reaction were investigated systematically. The reaction rate of hydrogen peroxide in the epoxidation of allyl chloride is zero order with respect to hydrogen peroxide. The activation energy is 52.27 kJ/mol.  相似文献   

11.
The kinetics of oxygen-atom transfer from the peroxo complexes of methyltrioxorhenium (MTO) to alkenes in ionic liquids have been investigated. Noncatalytic conversions of alkenes to epoxide were monitored by UV/Vis at 360 nm, where the monoperoxorhenium (mpRe) and diperoxorhenium (dpRe) complexes absorb. Water- and peroxide-free dpRe was prepared in situ by the reaction of MTO and urea hydrogen peroxide (UHP) in dry THF. The observed biexponential time profiles in conjunction with kinetic modeling allow the assignment of the fast step to the reaction of olefin with dpRe (k4) and the slow step to the analogous reaction with mpRe (k3). In most of the tudied ionic liquids, k4 approximately 5 x k3. 2H NMR experiments conducted with [D3]dpRe under non-steady-state conditions confirm the speciation of the catalytic system in ionic liquids and assert the validity of the UV/Vis kinetics. Deuteriated alkenes were used to study the catalytic epoxidation and dihydroxylation of alkenes by 2H NMR spectroscopy. The values of k4 for alpha-methylstyrene in several ionic liquids exceed what is observed in acetonitrile by an order of magnitude. While the rate of olefin epoxidation is unaffected by the nature of the ionic liquid cation, a discernible kinetic effect is observed with coordinating anions such as nitrate.  相似文献   

12.
Recently developed electron-poor Pt(II) catalyst 1 with the "green" oxidant 35% hydrogen peroxide displays high activity and complete substrate selectivity in the epoxidation of terminal alkenes because of stringent steric and electronic requirements. In the presence of isolated dienes bearing terminal and internal double bonds, epoxidation is completely regioselective toward the production of terminal epoxides. Insight into the mechanism is gained by means of a reaction progress kinetic analysis approach that underlines the peculiar role of 1 in activating both the alkene and H2O2 in the rate-determining step providing a rare example of nucleophilic oxidation of alkenes by H2O2.  相似文献   

13.
A series of transition metal substituted polyfluorooxometalates (PFOM) [M(L)H2F6NaW17)55]q-, M= Zn2+ , Co2+, Mn2+, Fc2+, Ru2+, Ni2+ and V5+ and L=H2O, O2-, of quasi-Wells-Dawson structure, was synthesized. In the series prepared, only the nickel-substituted polyfluorooxometalate was capable of catalytic activation of hydrogen peroxide in biphasic reaction media, the reaction leading mainly to the selective epoxidation of alkenes and alkenols. The manganese-, cobalt-, ruthenium-, iron-, vanadium-, and zinc-substituted polyfluorooxometalates were catalytically inactive, although, except for the zinc polyfluorooxometalate, very significant catalase activity was observed. Oxidation of thianthrene showed that sulfoxides were oxidized more easily than sulfides. Kinetic profiles of cyclooctene epoxidation showed that the reaction was zero order in both cyclooctene and hydrogen peroxide. Hydrogen peroxide was consumed at a rate 40% higher than the rate of epoxidation of cyclooctene. The reaction appears to proceed through an intermediate peroxo/hydroperoxo species that was observed in the IR spectrum. Atomic absorption, IR and 19F NMR spectroscopy indicated that the [Ni(H2O)H2F6NaW17O55]9- compound was stable under reaction conditions.  相似文献   

14.
A novel application of microwave irradiation for the epoxidation of some simple alkenes, in which hydrogen peroxide was used as an oxidant together with sodium tungsten and phosphorous acid under phase‐transfer catalytic (PTC) conditions, is described as a new environmentally benign method. In comparison with conventional heating, the microwave process is a very useful alternative for introducing of the oxirane ring into some unsaturated hydrocarbons because of reduction of the reaction time and increase in yield.  相似文献   

15.
Films of polyions and octahedral layered manganese oxide (OL-1) nanoparticles on carbon electrodes made by layer-by-layer alternate electrostatic adsorption were active for electrochemical catalysis of styrene epoxidation in solution in the presence of hydrogen peroxide and oxygen. The highest catalytic turnover was obtained by using applied voltage -0.6 V vs SCE, O(2), and 100 mM H(2)O(2). (18)O isotope labeling experiments suggested oxygen incorporation from three different sources: molecular oxygen, hydrogen peroxide, and/or lattice oxygen from OL-1 depending on the potential applied and the oxygen and hydrogen peroxide concentrations. Oxygen and hydrogen peroxide activate the OL-1 catalyst for the epoxidation. The pathway for styrene epoxidation in the highest yields required oxygen, hydrogen peroxide, and a reducing voltage and may involve an activated oxygen species in the OL-1 matrix.  相似文献   

16.
陈曼  蒋平平  叶夏  施赛泉  卢云 《化学学报》2009,67(13):1412-1416
以金属有机化合物甲基三氧化铼(MTO)为催化剂, 双氧水为氧化剂新型化学方法合成环氧大豆油. 详细考察了催化剂在双氧水、溶剂和助剂等因素下的催化性能. 研究了该催化体系在其他油脂环氧化中的应用, 环氧产物的选择性在99%以上. 采用红外光谱法(IR)对产品进行表征. 通过紫外-可见分光光度法(UV-Vis)对催化剂的研究, 发现催化剂(MTO)在催化环氧化过程中形成催化中间体, 且催化活性很高. 对催化剂和双氧水相互作用机理及新型环氧化反应的机理进行了初步研究.  相似文献   

17.
The tetra-n-butylammonium (TBA) salt of the divacant Keggin-type polyoxometalate [TBA](4)[gamma-SiW(10)O(34)(H(2)O)(2)] (I) catalyzes the oxygen-transfer reactions of olefins, allylic alcohols, and sulfides with 30 % aqueous hydrogen peroxide. The negative Hammett rho(+) (-0.99) for the competitive oxidation of p-substituted styrenes and the low value of (nucleophilic oxidation)/(total oxidation), X(SO)=0.04, for I-catalyzed oxidation of thianthrene 5-oxide (SSO) reveals that a strongly electrophilic oxidant species is formed on I. The preferential formation of trans-epoxide during epoxidation of 3-methyl-1-cyclohexene demonstrates the steric constraints of the active site of I. The I-catalyzed epoxidation proceeds with an induction period that disappears upon treatment of I with hydrogen peroxide. (29)Si and (183)W NMR spectroscopy and CSI mass spectrometry show that reaction of I with excess hydrogen peroxide leads to fast formation of a diperoxo species, [TBA](4)[gamma-SiW(10)O(32)(O(2))(2)] (II), with retention of a gamma-Keggin type structure. Whereas the isolated compound II is inactive for stoichiometric epoxidation of cyclooctene, epoxidation with II does proceed in the presence of hydrogen peroxide. The reaction of II with hydrogen peroxide would form a reactive species (III), and this step corresponds to the induction period observed in the catalytic epoxidation. The steric and electronic characters of III are the same as those for the catalytic epoxidation by I. Kinetic, spectroscopic, and mechanistic investigations show that the present epoxidation proceeds via III.  相似文献   

18.
钛硅分子筛TS-1催化氯丙烯环氧化反应动力学研究   总被引:9,自引:0,他引:9  
 摘要:研究了钛硅分子筛催化氯丙烯环氧化反应的条件及动力学行为.\r\n结果表明,以钛硅分子筛为催化剂,氯丙烯可被高选择性地氧化为环氧\r\n氯丙烷.环氧化反应速度与分子筛中骨架钛的含量及分子筛的用量呈正\r\n比关系,是一级反应.对于氧化剂H2O2,只有当c(H2O2)<0.4mol/\r\nL时,环氧化反应为一级反应;而c(H2O2)>1.0mol/L时,为零级反\r\n应.对于氯丙烯,随着其浓度的变化,环氧化反应的级数在1和0之间.\r\n然而,只有当氯丙烯浓度很高时,环氧化反应的级数才有明显的降低.\r\n根据实验结果和Eley-Rideal单分子吸附方程,提出了氯丙烯环氧化反\r\n应的动力学模型.\r\n关键词:钛硅分子筛,氯丙烯,过氧化氢,环氧化,环氧氯丙烷,反应\r\n动力学  相似文献   

19.
《Tetrahedron: Asymmetry》2001,12(3):433-437
The catalytic enantioselective epoxidation of chromenes, indene and styrene using a urea–hydrogen peroxide adduct as an oxidising agent and the novel dimeric homochiral Mn(III)-Schiff base catalyst 1 has been investigated in the presence of carboxylate salts and nitrogen and oxygen coordinating co-catalysts. Conversions of more than 99% were obtained with all alkenes except styrene. Absolute chiral induction, as determined by 1H NMR using the chiral shift reagent (+)-Eu(hfc)3, was obtained in the case of nitro- and cyanochromene. The catalyst could be re-used for up to five cycles with some loss of activity due to degradation of the catalyst under epoxidation condition with retention of e.e.'s.  相似文献   

20.
Highly efficient epoxidation of alkenes with H2O2 catalyzed by tungsten hexacarbonyl supported on multi-wall carbon nanotubes (MWCNTs) modified with 1,2-diaminobenzene is reported. The prepared catalyst, [W(CO)6@DAB-MWCNT], was characterized by elemental analysis, scanning electron microscopy, FT-IR, and diffuse reflectance UV-Vis spectroscopic methods. The prepared catalyst was applied as an efficient catalyst for green epoxidation of alkenes with hydrogen peroxide in CH3CN. This heterogeneous metal carbonyl catalyst showed high stability and reusability in epoxidation without loss of its catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号