首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have developed a process to incorporate an integral membrane protein, Photosystem I (PSI), into an organic thin film at an electrode surface and thereby insulate the protein complex on the surface while mimicking its natural environment. The PSI complex, which is primarily more hydrophobic on the exterior than interior, is hydrophobically confined in vivo within the thylakoid membrane. To mimic the thylakoid membrane and entrap PSI on an electrode, we have designed a series of steps using a thin self-assembled monolayer (SAM) to adsorb and orient PSI followed by exposures to longer-chained methyl-terminated alkanethiols that place exchange with components of the original SAM in the interprotein domains. In this process, PSI is first adsorbed onto a HOC(6)S/Au substrate through a short exposure to a dilute solution of the protein to achieve a protein coverage of approximately 25%. The PSI/HOC(6)S/Au substrate is then placed into a solution containing one of various longer-chained alkanethiols including C(22)SH or C(18)OC(19)SH. Changes in thickness, interfacial capacitance, infrared spectra, and surface wettability were used to assess the extent of backfilling by the long-chained thiols. The coverage of the protein layer and the solvent used for backfilling affected the rate and quality of the SAM formed in the interprotein regions. After exposure of the PSI layer to solvents containing alkanethiols, there was only minor loss of protein on the surface and no real change in protein secondary structure as evidenced by reflectance absorption infrared spectroscopy.  相似文献   

2.
Dense monolayers of [Ru(dpp)2Qbpy]2+, where dpp is 4,4'-diphenylphenanthroline and Qbpy is 2,2':4,4' ':4'4' '-quarterpyridyl, have been formed by spontaneous adsorption onto clean platinum microelectrodes. The cyclic voltammetry of these monolayers is nearly ideal, and three redox states are accessible over the potential range of +/-1.3 V. Chronoamperometry conducted on the microsecond time scale has been used to probe the dynamics of heterogeneous electron transfer and indicates that the standard heterogeneous electron-transfer rate constant, k degrees , is approximately 106 s-1. The metal complex emits at approximately 600 nm in fluid and solid solution as well as when bound to a platinum electrode surface within a dense monolayer. In the case of the monolayers, it appears that the excited states are not completely deactivated by radiationless energy transfer to the metal because electronic coupling between the adsorbates and the electrode is weak. The dynamics of lateral electron transfer between the electronically excited Ru2+* and ground-state Ru3+ species has been explored by measuring the luminescence intensity after defined quantities of Ru3+ have been produced electrochemically within the monolayer. The rate of lateral electron transfer is between 8 x 106 and 3 x 108 M-1 s-1, indicating efficient electron transfer between adsorbates in close-packed assemblies. Voltammetry conducted at megavolt per second scan rates has been used to directly probe the redox properties of the electronically excited species.  相似文献   

3.
In this study, a Au(111) electrode is functionalized with a monolayer of 1-thio-β-D-glucose (β-Tg), producing a hydrophilic surface. A monolayer of β-Tg was formed on a Au(111) surface by either (1) potential-assisted deposition with the thiol in a supporting electrolyte or (2) passive incubation of a gold substrate in a thiol-containing solution. For each method, the properties of the β-Tg monolayer were investigated using cyclic voltammetry (CV), differential capacitance (DC), and chronocoulometry. In addition, electrochemical scanning tunneling microscopy (EC-STM) was used to obtain images of the self-assembled monolayer with molecular resolution. Potential-assisted assembly of β-Tg onto a Au(111) electrode surface was found to be complicated by oxidation of β-Tg molecules. The EC-STM images revealed formation of a passive layer containing honeycomb-like domains characteristic of a formation of S(8) rings, indicating the S-C bond may have been cleaved. In contrast, passive self-assembly of thioglucose from a methanol solution was found to produce a stable, disordered monolayer of β-Tg. Since the passive assembly method was not complicated by the presence of a faradaic process, it is the method of choice for modifying the gold surface with a hydrophilic monolayer.  相似文献   

4.
《Electroanalysis》2006,18(16):1572-1577
An amperometric tyrosinase biosensor was developed via a simple and effective immobilization method using the self‐assembled monolayers (SAMs) technique. The organic monolayer film was first formed by the spontaneous assembly of thiolor sulfur compound (1,6‐hexanedithiol, HDT) from solution onto gold electrode. When these thiol‐rich surfaces were exposed to Au colloid, the sulfurs form strong bonds to gold nanoparticles, anchoring the clusters to the electrode substrate. After the assembly of gold nanoparticles layer, a new nano‐Au surface was obtained. Thus, the tyrosinase could be immobilized onto the electrode. The tyrosinase retained its activity well in such an immobilization matrix. The various experimental variables for the enzyme electrode were optimized. The resulting biosensor can reach 95% of steady‐state current within 10 s, and the trend in the sensitivity of different phenolic compounds was as follows: catechol>phenol>p‐cresol. In addition, the apparent Michaelis–Menten constant (K and the stability of the enzyme electrode were estimated.  相似文献   

5.
This study unveils a new tetracene derivative that forms dense, upright monolayers on the surface of aluminum oxide. These monolayers spontaneously self-organize into the active layer in nanoscale field-effect transistor devices when aluminum oxide is used as the dielectric layer. This method gives high yields of working devices that have source-drain distances that are less than 60 nm, thereby providing a method to electrically probe the monolayer assemblies formed from approximately 10 zeptomoles of material (approximately 104 molecules). Moreover, this study delineates a new avenue for research in thin-film organic transistors where the active molecules are linked to the dielectric surface to form a monolayer transistor.  相似文献   

6.
Thiol end-functionalized polystyrene chains have been introduced onto the surface of gold nanoparticles via a two-step grafting-to method. This simple grafting procedure is demonstrated to be efficient for gold nanoparticles of different sizes and for particles initially dispersed in either aqueous or organic media. The method has been applied successfully for a relatively large range of polystyrene chain lengths. Grafting densities, as determined by thermogravimetric analysis, are found to decrease with increasing chain length. In all cases, the grafting density indicates a dense brush conformation for the tethered chains. The resulting functionalized nanoparticles self-organize into hexagonally ordered monolayers when cast onto solid substrates from chloroform solution. Furthermore, the distance between the gold cores in the dried monolayer is controlled by the molecular weight of the grafted polystyrene. Optical absorption spectra recorded for the organized monolayers show the characteristic plasmon absorption of the gold particles. Importantly, the plasmon resonance frequency exhibits a distinct dependence on interparticle separation that can be attributed to plasmon coupling between neighboring gold cores.  相似文献   

7.
A novel method for fabricating nanostructured gold colloid electrode based on in situ functionalization of self-assembled monolayers (SAMs) of 4-aminothiophenol (4-ATP) on gold electrode is proposed. The in situ functionalization of 4-ATP SAMs yields a redox active monolayer of 4′-mercapto-N-phenylquinone diimine (NPQD). When the amino-rich surface is exposed to gold colloid, the citrate-stabilized gold nanoparticles (GNPs) can be anchored onto the surface of the in situ functionalized electrode by the electrostatic interactions and a new nanostructured gold colloid surface was obtained. The mixed monolayers of in situ functionalized product, NPQD, and 1,4-benzenedimethanethiol (BDMT) can provide a more compact and order platform to fabricate GNPs on the electrode surface. The film formed by this technique has the advantages of high organization and uniformity, which could provide a desirable microenvironment to assemble GNPs and facilitate the concentration of the analyte from the bulk solution to the electrode surface. The nanostructured gold colloid electrode has favorable effect on the electrochemical oxidation of naphthol isomers.  相似文献   

8.
In the work presented, thiol- and COOH-terminated dipyrromethene derivatives have been applied for gold electrode modification. Dipyrromethene deposited onto a solid support, after binding Cu2+, can act as a redox active monolayer. The complexation of Cu(II) ions has been performed on the surface of gold electrodes modified with dipyrromethene. The characterization of dipyrromethene-Cu(II) self-assembled monolayers (SAMs) has been done by cyclic voltammetry (CV), wettability contact angle measurements, and atomic force microscopy (AFM). The new electroactive monolayer could be applied for the immobilization of proteins and ssDNA or for electrochemical anion sensing without redox markers in the solution.  相似文献   

9.
Scanning tunneling microscopy has been used to determine the molecular ordering in stable, ordered monolayers formed from long-chain normal and substituted alkanes in solution on highly oriented pyrolytic graphite surfaces. Monolayers were initially formed using an overlying solution of either a symmetrical dialkylthioether or a symmetrical dialkylether. Initially pure thioether solutions were then changed to nearly pure solutions of the identical chain-length ether, and vice versa. The direct application of a pure solution of long-chain symmetrical ethers onto graphite produced a lamellate monolayer within which the individual molecular axes were oriented at an angle of approximately 65 degrees to the lamellar axes. In contrast, a pure solution of long-chain symmetrical thioethers on graphite produced a monolayer within which the molecular axes were oriented perpendicular to the lamellar axes. When ethers were gradually added to solutions overlying pure thioether monolayers, the ethers substituted into the existing monolayer structure. Thus, the ether molecules could be forced to orient in the perpendicular thioether-like manner through the use of a thioether template monolayer. Continued addition of ethers to the solution ultimately produced a nearly pure ether monolayer that retained the orientation of the thioether monolayer template. However, a monolayer of thioether molecules formed by gradual substitution into an ether monolayer did not retain the 65 degrees orientation typical of dialkylethers, but exhibited the 90 degrees orientation typical of dialkylthioether monolayers. The thioethers and ethers were easily distinguished in images of mixed monolayers, allowing both an analysis of the distribution of the molecules within the mixed monolayers and a comparison of the monolayer compositions with those of the overlying solutions. Substitution of molecules into the template monolayer did not proceed randomly; instead, a molecule within a monolayer was more likely to be replaced by a molecule in the overlying solution if it was located next to a molecule that had already been replaced.  相似文献   

10.
In this paper, we describe an easy and reliable method for the production of patterned monolayers of Co nanoparticles. A two-dimensional monolayer of Co nanoparticles is fabricated by spreading a nanoparticle solution over an air-water interface and then transferring it to a hydrophobic substrate by using the Langmuir-Blodgett (LB) method. Transmission electron microscopy (TEM) was used to show that, with increasing surface pressure, the Co nanoparticles become well-organized into a Langmuir monolayer with a hexagonal close-packed structure. By controlling the pH of the subphase, it was found that a monolayer of Co nanoparticles with long-range order could be obtained. Further, by transferring the Langmuir monolayer onto a poly(dimethoxysilane) (PDMS) mold, the selective micropatterning of the Co nanoparticles could be achieved on a patterned electronic circuit. The electronic transport properties of the Co nanoparticles showed the ohmic I-V curve.  相似文献   

11.
Infrared reflection absorption spectroscopy (IRRAS) and surface plasmon resonance (SPR) techniques have been employed to investigate human serum albumin (HSA) binding to binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA). At the air-water interface, the favorable electrostatic interaction between DPPC and DOMA leads to a dense chain packing. The tilt angle of the hydrocarbon chains decreases with increasing mole fraction of DOMA (X(DOMA)) in the monolayers at the surface pressure 30 mN/m: DPPC ( approximately 30 degrees ), X(DOMA) = 0.1 ( approximately 15 degrees ), and X(DOMA) = 0.3 ( approximately 0 degrees ). Negligible protein binding to the DPPC monolayer is observed in contrast to a significant binding to the binary monolayers. After HSA binding, the hydrocarbon chains at X(DOMA) = 0.1 undergo an increase in tilt angle from 15 degrees to 25 approximately 30 degrees , and the chains at X(DOMA) = 0.3 remain almost unchanged. The two components in the monolayers deliver through lateral reorganization, induced by the protein in the subphase, to form multiple interaction sites favorable for protein binding. The surfaces with a high protein affinity are created through the directed assembly of binary monolayers for use in biosensing.  相似文献   

12.
Silicon(111)-H surfaces were derivatized with omega-functionalized alkenes in UV-mediated and thermal hydrosilylation reactions to give Si-C linked monolayers. Additional molecular layers of organic compounds were coupled either directly or via linker molecules to the functionalized alkyl monolayers. In the first instance, amino-terminated monolayers were prepared from a tert-butoxycarbonyl-protected omega-aminoalkene followed by removal of the protecting group. Various thiols were coupled to the monolayer using a heterobifunctional linker, which introduced maleimide groups onto the surface. In the second system, N-hydroxysuccinimide (NHS) ester-terminated monolayers were formed by reaction of Si-H with N-succinimidyl undecenoate. The reactivity of the NHS ester groups was confirmed by further modification of the monolayer. The stepwise assembly of these multilayer structures was characterized by X-ray reflectometry and X-ray photoelectron spectroscopy.  相似文献   

13.
We report on the electrochemical behaviour and electropolymerization of self‐assembled monolayers (SAMs) of methylene blue (MB) on gold electrodes. The SAMs of MB on gold electrodes were prepared by immersing the substrates into a solution of 1.0 mM MB in absolute ethanol for different times at room temperature. Cyclic voltammetry experiments exhibited that reductive desorption of MB monolayer takes place at three different potentials on polycrystalline gold electrodes, while reductive desorption of MB monolayer consists of only one peak on single crystal Au(111) substrates. Calculated charge densities for different immersion times indicated that optimal immersion time for self‐assembly of MB is 96 h. Electropolymerization of SAMs of MB on gold electrode was achieved by applying 0.95 V for 1 s in 0.1 M borate buffer solution (pH: 9.0). It was observed that poly(MB) monolayers are highly stable in acidic media. ATR‐FTIR and UV‐vis spectra exhibited differences between monomer and polymer monolayers, which are attributed to surface‐confined electropolymerization. STM image of poly(MB) monolayer on Au(111) substrate revealed a surface that is covered by well‐ordered, collateral nanowires with an average size of 3 nm.  相似文献   

14.
The first well-defined organic monolayers assembled on polydicyclopentadiene is reported. Commercial grade dicyclopentadiene was polymerized with the Grubbs' second-generation catalyst in a fume hood under ambient conditions at very low monomer to catalyst loadings of 20 000 to 1. This simple method resulted in a polymer that was a hard solid and appeared slightly yellow. Brief exposures of a few seconds of this polymer to Br 2 lead to a surface with approximately half of the olefins brominated as shown by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection-infrared (ATR-IR) spectroscopy. The ATR-IR spectroscopy was carried out with the polymer in contact with a Ge hemisphere housed in a GATR accessory from Harrick. This brominated polydicyclopentadiene was immersed in DMF with 4-(trifluoromethyl)benzylamine to assemble a monolayer. The amines displaced Br on the surface to form a monolayer that exposed a CF 3 group on the surface. The surface was extensively studied by XPS using the method described by Tougaard to find the distribution of F within the surface layer. The ratio for the peak area, Ap, to the background height, B, measured 30 eV below the peak maximum was 109.8 eV. This value clearly indicated that F was found only at the surface and was not found within the polymer. A surface coverage of 1.37 amines per nm (2) was estimated and indicated that the monolayer was 28% as dense as a similar monolayer assembled from thiols on gold. Finally, a simple method to pattern these monolayers using soft lithography is described. This work is critically important because it reports the first monolayers on a relatively new and emerging polymer that has many desirable physical characteristics such as high hardness, chemical stability, and ease of forming different shapes.  相似文献   

15.
A simple method was used to prepare a "switchable" electrode surface by using self-assembled monolayers of dodecanethiol on a gold electrode. The dodecane-modified electrode was electrochemically inactive until the monolayer was soaked in solutions of 1,10-phenanthroline or 2,2'-bipyridine. The electroactive form of the electrode could be reverted back to the nonelectroactive form by rinsing the electrode. Surface IR results showed that both dodecanethiol and 1,10-phenanthroline exist in the mixed monolayer.  相似文献   

16.
Electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance (QCM) measurements are used to examine the ability of applied potential to drive the ionic self-assembly of poly(diallyldimethylammonium) chloride (PDDA) onto a substrate modified with a monolayer of 3-mercaptopropionic acid (3-MPA). The potential of zero charge (PZC) of the gold electrode modified with a monolayer of 3-MPA was found by differential capacitance measurements to be -0.12 (+/-0.01) V versus Ag-AgCl. Changing the substrate potential to values positive (-0.01 V vs Ag-AgCl) of the PZC induces interfacial conditions that are favorable for the electrostatic deposition of cationic polymers onto the surface of 3-MPA monolayers. This result is also consistent with experimental observations obtained when the 3-MPA-modified substrate is exposed to 0.10 mol L (-1) NaOH solutions. When potentials equal or negative to the PZC are applied to the substrate, no significant accumulation of the PDDA is found by either QCM or EIS measurement. This result is consistent with results obtained when the 3-MPA modified substrate is exposed to 0.10 mol L (-1) HCl solutions where no PDDA adsorption is expected because the monolayer is neutral under these conditions. Changes in the impedance and quartz crystal frequency obtained after potential is applied to the substrate are interpreted in terms of the applied potential creating interfacial conditions that are favorable for the deprotonation of the terminal carboxylic acid groups and the subsequent electrostatic assembly of the polycation onto the negatively charged monolayer.  相似文献   

17.
Self-assembled monolayers (SAMs) bearing pendant carbohydrate functionality are frequently employed to tailor glycan-specific bioactivity onto gold substrates. The resulting glycoSAMs are valuable for interrogating glycan-mediated biological interactions via surface analytical techniques, microarrays, and label-free biosensors. GlycoSAM composition can be readily modified during assembly by using mixed solutions containing thiolated species, including carbohydrates, oligo(ethylene glycol) (OEG), and other inert moieties. This intrinsic tunability of the self-assembled system is frequently used to optimize bioavailability and antibiofouling properties of the resulting SAM. However, until now, our nanoscale understanding of the behavior of these mixed glycoSAMs has lacked detail. In this study, we examined the time-dependent clustering of mixed sugar + OEG glycoSAMs on ultraflat gold substrates. Composition and surface morphologic changes in the monolayers were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. We provide evidence that the observed clustering is consistent with a phase separation process in which surface-bound glycans self-associate to form dense glycoclusters within the monolayer. These observations have significant implications for the construction of mixed glycoSAMs for use in biosensing and glycomics applications.  相似文献   

18.
《Supramolecular Science》1996,3(4):183-187
A method has been developed to deposit monolayers of a supramolecular assembly of amphiphiles onto solid substrates. A stable monolayer in a solid state is allowed to form at the air-water interface. The subphase is then allowed to seep out at a controlled rate and the monolayer descends and ultimately is deposited on the solid substrate. The quality of the films thus formed is comparable to that of the film deposited by the Langmuir-Blodgett technique. The method is simple, cost-effective and adaptable for scaling up for industrial application or scaling down for specialized use.  相似文献   

19.
张悦  冯涛涛  纪文亮  张美宁 《电化学》2019,25(3):400-408
自组装单分子膜(SAM)由于其独特的物理化学性质近年来受到了极大的关注. SAM通过金硫键在电极表面形成高度有序的单分子膜,该稳定的分子膜不仅可以调节表面的亲疏水性质,而且可以促进电极表面氧化还原活性分子的反应速率. 本论文提出了一种简单有效的方法,在金微电极上构建半胱氨酸和胱胺共自组装单分子膜用于活体内抗坏血酸的检测. 研究发现,当混合单分子层中半胱氨酸和胱胺的摩尔比为1:1时,可以在低电位下(约为0.10 V)显著增强抗坏血酸氧化的电子转移动力学,同时该膜能在一定程度上抵抗蛋白质在电极表面的非特异性吸附. 将共自组装单分子膜应用到活体检测中,作者检测到鼠纹状体中抗坏血酸的基准值为257±30mmol·L-1(n = 3). 本论文为活体电化学检测提供了一种简单、有效的方法.  相似文献   

20.
This article describes mild methods to directly assemble, functionalize, and pattern monolayers of undecylenic acid on hydrogen-terminated Si(111). These monolayers were assembled under very mild conditions from a neat solution of undecylenic acid containing 0.1 mol % 4-(decanoate)-2,2,6,6-tetramethylpiperidinooxy at room temperature without the need for UV light. Because of these mild conditions, monolayers exposing carboxylic acids could be assembled in one step without the need to protect the acid prior to its assembly. The monolayers were extensively characterized by horizontal attenuated total reflection infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The monolayers bonded to the silicon surface preferentially through the olefin with no detectable bonds between the carboxylic acids and silicon. The crystallinity of the monolayer was studied by infrared spectroscopy through the antisymmetric--v(a)(CH(2))--and symmetric--v(s)(CH(2))--stretches for methylene. Because it is important for future applications to assemble functional surfaces, methods to react the acid-terminated monolayers with trifluoroacetic anhydride and triethylamine to yield a symmetric anhydride on the monolayer were studied. These anhydrides were reacted with a variety of milligram-quantity amines to yield amide-terminated surfaces. This method was general, and a variety of amines could be bonded to the monolayer. The stabilities of these monolayers upon exposure to ambient conditions and under a variety of solvents were described. Because patterned monolayers have found wide applications, we have developed methods to pattern 1-octadecylamine and poly(ethylenimine) on the micrometer scale using soft lithography. In addition, polymer brushes of polynorbornene with thicknesses from 32 to 150 nm were grown from monolayers patterned with the Grubbs' catalyst. The patterned surfaces were imaged by scanning electron microscopy, scanning probe microscopy, and ellipsometry to determine the thicknesses of the patterns and the fidelity of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号