共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
3.
采用共沉淀法制备了Ca/Al复合氧化物固体碱催化剂,考察了沉淀剂种类、Ca/Al摩尔比、沉淀温度、溶液pH值、老化时间和焙烧温度等制备条件对其催化剂活性的影响。采用正交实验方法得到制备Ca/Al复合固体碱催化剂前躯体的最佳制备条件为,沉淀剂NaOH,Ca/Al摩尔比为3,沉淀温度为60 ℃,沉淀过程中pH值保持在10,在90 ℃老化18 h。在该最优条件下制备的催化剂前驱体主要以Ca4Al2O6(NO3)2·10H2O晶相存在,在N2气保护下300 ℃焙烧2 h后,催化剂形成高分散钙铝复合氧化物,且碱性强度达到26.5以上。在催化菜籽油和甲醇的酯交换反应中,菜籽油的转化率达到95%,脂肪酸甲酯的质量分数为95.9%。 相似文献
4.
稻壳炭基固体酸催化剂的制备及其催化酯化反应性能 总被引:3,自引:0,他引:3
以热解稻壳炭为原料, 浓硫酸为磺化剂制备了固体酸催化剂. 采用X射线衍射、X射线光电子能谱、元素分析、孔结构分析和热重-质谱联用等手段对其进行了表征. 以油酸和甲醇的酯化为探针反应, 考察了磺化温度和时间对催化剂活性的影响, 探讨了反应条件对油酸转化率的影响, 并对所制催化剂的稳定性进行了研究. 结果表明, 制备该催化剂的适宜磺化温度和时间分别为90℃和0.25 h, 在该条件下制得的催化剂为无定形碳结构, 磺酸基密度为0.7 mmol/g. 该催化剂表现出较高的催化酯化反应活性, 在催化剂用量为5%、甲醇/油酸摩尔比为4、酯化温度和时间分别为110℃和2 h的条件下, 油酸的酯化率可达98.7%. 该催化剂具有较好的稳定性, 经7次连续反应后, 油酸的酯化率仍可达96.0%. 相似文献
5.
采用共沉淀、高温焙烧及KF掺杂Zn-Al类水滑石的方法制备了KF/Zn-Al固体碱催化剂。 通过正交试验考察了制备条件对KF/Zn-Al固体碱催化活性的影响,得到的优化条件为:陈化温度353 K、陈化时间16 h、焙烧温度823 K、焙烧时间6 h及m(KF)/m(Zn-Al)=1。 以优化条件下制备的KF/Zn-Al固体碱为催化剂,在n(醇)/n(油)=9、m(催化剂)/m(油)=0.04、反应温度338 K、反应时间0.5 h的条件下,菜籽油转化率可达97.75%。 采用TG DTG、BET、XRD、SEM技术及Hammett指示剂法对催化剂及其前驱体进行了表征。 对催化剂结构及表面性质与其活性之间的关系进行了讨论。 相似文献
6.
固体碱催化剂K_2CO_3/Al_2O_3的制备及其催化餐饮废油制生物柴油的性能 总被引:1,自引:0,他引:1
采用浸渍法制备了K2CO3/Al2O3固体碱催化剂,考察了活性组分负载量、焙烧温度、焙烧时间等制备条件对催化剂在催化餐饮废油合成生物柴油的酯交换反应中催化活性的影响,并对其进行了FT-IR、XRD、TG-DTG、SEM和BET表征分析。实验结果表明,所制备的催化剂在催化餐饮废油合成生物柴油的酯交换反应中表现出良好的活性,在活性组分K2CO3负载量为50%、焙烧温度500℃、焙烧时间3 h的条件下制备的催化剂催化酯交换反应时,生物柴油产率可达86.70%。催化剂表征结果显示,K2CO3/Al2O3催化活性是因K2CO3与Al2O3经高温焙烧产生新的晶相有关。催化剂重复使用4次,生物柴油产率仍在75%以上。制得的生物柴油产品质量达到国家生物柴油B100标准。 相似文献
7.
8.
氧化钙和氟化钾负载高岭土固体碱催化制备新型生物柴油 总被引:1,自引:0,他引:1
以高岭土为载体,利用浸渍法制备了氧化钙和氟化钾负载高岭土固体碱(GCK);利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(FT-IR)和哈密特指示剂法等技术手段对催化剂进行表征;考察了KF负载量和反应条件对月桂酸甲酯(ML)与乙二醇单甲醚(EGME)酯交换反应制备新型生物柴油产率的影响。 结果表明,GCK碱强度(H_)在7.2~18.4之间,KCaF3为主要活性组分,当氟化钾负载量为25%、EGME与ML摩尔比3.0、催化剂用量相对于ML的质量分数为4.5 %、120 ℃下反应2 h,新型生物柴油的收率高达97.1%。 最后对催化剂的重复利用性能进行了考察。 相似文献
9.
采用溶胶-凝胶法制备了CaO摩尔分数为10%~50%的CaO-ZrO2系列纳米催化剂,将其用于催化红麻籽油制备生物柴油,通过CO2-TPD、XRD和TEM等测试技术对催化剂的碱性、结构和表面形貌进行表征。 结果表明,CaO摩尔分数低于30%时,CaO与ZrO2形成连续固溶体,催化剂具有良好的热稳定性能,粒径为10~20 nm。 催化实验表明,当CaO摩尔分数为30%时,CaO-ZrO2催化剂具有最好的催化活性,甲醇与红麻籽油的摩尔比为12∶1、催化剂为油料质量比的2.5%、反应时间3 h时,最高转化率可达到93.2%。 相似文献
10.
CaO-MgO@CoFeO磁性固体碱的制备及其大豆油酯交换反应催化性能 《燃料化学学报》2016,44(4):422-427
以草酸盐为前驱体采用两步法制备了一种以CaO-MgO作为活性组分,以CoFe_2O_4作为磁核的磁性固体碱催化剂,并用于大豆油与甲醇的酯交换反应合成生物柴油。对制备的磁性固体碱催化剂进行了磁滞回线、X-射线衍射(XRD)、CO_2-TPD及透射电镜(TEM)表征。考察了不同核壳物质的量比、焙烧温度、反应温度、反应时间、醇油物质的量比以及催化剂用量等因素对大豆油转化为生物柴油产率的影响。结果表明,采用核壳物质的量比为1∶6、焙烧温度为700℃所制备的CaO-MgO@CoFe_2O_4催化剂,当醇油物质的量比为12、催化剂用量为大豆油质量的1.0%时,在65℃下反应时间3 h,生物柴油收率高达97.1%。该催化剂具有较好的重复利用性能,重复利用四次后生物柴油的收率仍可达90%。 相似文献
11.
The heterogeneous base-catalyzed transesterification for biodiesel synthesis has been studied intensively over the last decade.
This review classifies the solid base catalysts for transesterification into the following six categories based on Hattori’s
classification: single metal oxides, mixed metal oxides, zeolites, supported alkali/alkaline earth metals, clay minerals (hydrotalcites),
and non-oxides (organic solid bases). The catalysts in each category have acceptable catalytic activities overall, and follow
specific catalyst design rules, although not completely systematically, thereby drawing the best activity from them. In parallel,
each catalyst is not versatile and has some limitations specifically related to its catalytic structure and properties. This
review focuses on the heterogeneous base-catalyzed transesterification in terms of catalyst development, based on the published
research, especially over the last decade. 相似文献
12.
Batool Nisa Fazal Ullah Iqbal Nisa Mushtaq Ahmad Muhammad Zafar Mamoona Munir Shazia Sultana Wajid Zaman Hakim Manghwar Farman Ullah Muhammad Nauman Khan Diaa O. El-Ansary Hosam O. Elansary 《Molecules (Basel, Switzerland)》2022,27(15)
We confined the formation and characterization of heterogenous nano-catalysts and then used them to produce biodiesel from the novel non-edible seed oil of Prunus aitchisonii. P. aitchisonii seeds’ oil content was extracted at about 52.4 ± 3% with 0.77% FFA. Three different heterogenous nano-catalysts—calcined (CPC), KPC, and KOH-activated P. aitchisonii cake Titanium Dioxide (TiO2)—were synthesized using calcination and precipitation methods. The mentioned catalysts were characterized through XRD, SEM, and EDX to inspect their crystallin dimension, shape, and arrangement. Titanium dioxide has morphological dimensions so that the average particle size ranges from 49–60 nm. The result shows that the crystal structure of TiO2 is tetragonal (Anatase). The surface morphology of CPC illustrated that the roughness of the surface was increased after calcination, many macropores and hollow cavities appeared, and the external structure became very porous. These changes in morphology may increase the catalytic efficiency of CPC than non-calcined Prunus aitchisonii oil cake. The fuel belonging to PAOB stood according to the series suggested by ASTM criteria. All the characterization reports that P. aitchisonii is a novel and efficient potential source of biodiesel as a green energy source. 相似文献
13.
酯交换制生物柴油的CaO固体碱催化剂 总被引:3,自引:0,他引:3
用不同的前驱物合成了三种CaO催化剂, 并以X射线衍射(XRD)、扫描电子显微镜(SEM) 、程序升温脱附(TPD)等方法加以表征. 这些CaO被用作大豆油(SBO)经酯交换制取脂肪酸甲酯(FAME), 即生物柴油的催化剂, 由方解石制备的氧化钙(Cal(N))表现了最好的SBO酯交换活性. 检测发现CaO的酯交换活性与它们的碱性强度密切相关, 当暴露于CO2气氛下, 显著降低了CaO的酯交换催化活性(Raman光谱测试显示当置CaO于常温空气中, 其表面形成的CaCO3和Ca(OH)2将阻止CaO继续参与SBO的酯交换反应). CO2的毒化颇受制于CaO前驱体种类, Cal(N)比来自文石的CaO(即Ara(N))有更好的抗CO2毒化能力; 这些受损的CaO催化活性可部分复原. 提出了CaO催化剂受CO2毒化及其再生的机理, 同时讨论了SBO酯交换活性相到底是CaO固体表面, 拟或溶解了的CaO的问题. 相似文献
14.
Balkis Hazmi Mahnoush Beygisangchin Umer Rashid Wan Nur Aini Wan Mokhtar Toshiki Tsubota Ali Alsalme Chawalit Ngamcharussrivichai 《Molecules (Basel, Switzerland)》2022,27(20)
The by-product of the previous transesterification, glycerol was utilised as an acid catalyst precursor for biodiesel production. The crude glycerol was treated through the sulfonation method with sulfuric acid and chlorosulfonic acid in a reflux batch reactor giving solid glycerol-SO3H and glycerol-ClSO3H, respectively. The synthesised acidic glycerol catalysts were characterised by various analytical techniques such as thermalgravimetric analyser (TGA), infrared spectroscopy, surface properties adsorption-desorption by nitrogen gas, ammonia-temperature programmed desorption (NH3-TPD), X-ray diffraction spectroscopy (XRD), elemental composition analysis by energy dispersive spectrometer (EDX) and surface micrographic morphologies by field emission electron microscope (FESEM). Both glycerol-SO3H and glycerol-ClSO3H samples exhibited mesoporous structures with a low surface area of 8.85 mm2/g and 4.71 mm2/g, respectively, supported by the microscopic image of blockage pores. However, the acidity strength for both catalysts was recorded at 3.43 mmol/g and 3.96 mmol/g, which is sufficient for catalysing PFAD biodiesel at the highest yield. The catalytic esterification was optimised at 96.7% and 98.2% with 3 wt.% of catalyst loading, 18:1 of methanol-PFAD molar ratio, 120 °C, and 4 h of reaction. Catalyst reusability was sustained up to 3 reaction cycles due to catalyst deactivation, and the insight investigation of spent catalysts was also performed. 相似文献
15.
A cost-effective and environmentally friendly biodiesel synthesis has drawn attention in recent research activities. Used cooking oil which is known as waste is used in this study. The objectives of this research were to study an effect of biobased-catalyst which is used as supporting catalyst in simultaneous ozonolysis and transesterification for biodiesel synthesis and to study the effect of two steps process in biodiesel synthesis. The bio-based catalyst used in this process was empty palm bunch ash which was used as supporting catalyst for KOH. Two steps reaction were designed, the first step was run in a reactor at 30 °C with a continuous supply of ozone gas for 3 hours to cleave the unsaturated fatty acids at the double bonds. The second step was a follow up process after the first step without a supply of ozone gas, the temperature was increased up to 60 °C and the reaction continue for two hours. The second step aimed to convert saturated fatty acid which was not yet fully converted at the first step. Results of this study showed that 1.5% of KOH gave better performance in producing short chain methyl esters compared to 1% of KOH in the first step process at various percent weight of ash. The highest short chain methyl esters and long chain methyl esters produced in the first step process were 85.722 mg/liter and 655.286 mg/liter respectively, which was used 17.3 weight % ash and 1.5 weight % KOH. Short chain methyl esters were produced as a result of unsaturated fatty acid cracked by ozonolysis. It is confirmed that a simultaneous ozonolysis and transesterification occurred in the first step process. In conclusion, the presence of bio-based catalyst as supporting catalyst for KOH to produce higher total methyl esters has been effective. The second step process in this experiment was not effective since the effect of reaction time can enhance the hydrolysis of esters as a reverse reaction of transesterification, resulted in loss of esters. 相似文献
16.
生物柴油是一种重要的可再生清洁能源, 特别是经催化加氢脱氧等系列过程制备的第二代生物柴油, 在成分上与石油基燃料相似, 有望成为一种替代传统化石燃料的绿色能源. 在合成第二代生物柴油的研究中, 设计与制备兼具高活性与高稳定性的加氢脱氧多相催化剂是关键问题. 近年来, 研究者对于催化剂的种类与应用进行了探索, 并取得了一定的进展. 详细分析了加氢脱氧制备第二代生物柴油反应原料及反应参数、反应器对生产路径和产能的影响, 并对反应机理进行了介绍; 进一步从双金属位点、金属-酸性位点及金属-空位协同作用三个方面对催化剂结构设计进行了讨论和分析; 最后, 对第二代生物柴油领域的未来发展趋势进行了展望. 相似文献