首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonlocal constitutive law for an incompressible viscous flow in which the viscosity depends on the total dissipation energy of the fluid is obtained as the limit case of very large thermal conductivity when the viscosity varies with the temperature. A rigorous analysis is illustrated within the Hilbertian framework for unidirectional stationary flows of Newtonian and Bingham fluids with heating by viscous dissipation. An extension to quasi-Newtonian fluids of power law type and with temperature dependent viscosities is obtained in the context of the heat equation with an L1-term. The nonlocal model proposed by Ladyzhenskaya in 1966 as a modification of Navier-Stokes equations can be, in particular, obtained with this procedure. Bibliography: 14 titles.Dedicated to O. A. Ladyzhenskaya on the occasion of her 80th birthday__________Published in Zapiski Nauchnykh Seminarov POMI, Vol. 295, 2003, pp. 99–117.  相似文献   

2.
For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2005) through the energy method. Based on this stability analysis and some techniques on analyzing the convergence rates to stationary solutions for the compressible Navier-Stokes equations, in this paper, we study the convergence rate to the above stationary solutions for the Boltzmann equation which is a fundamental equation in statistical physics for non-equilibrium rarefied gas. By combining the dissipation from the viscosity and heat conductivity on the fluid components and the dissipation on the non-fluid component through the celebrated H-theorem, a convergence rate of the same order as the one for the compressible Navier-Stokes is obtained by constructing some energy functionals.  相似文献   

3.
The present work investigates the effects of the disks contracting, rotation, heat transfer and different permeability on the viscous fluids and temperature distribution between two heated contracting rotating disks. Two cases are considered. For the first case, we neglect the viscous dissipation effects in the energy equation and reduce the Navier-Stokes equations and energy equation into nonlinear coupled ODEs by introducing the Von Kármán type similarity transformations. The effects of various physical parameters like expansion ratio, Prandtl number, Reynolds number and rotation ratio on the velocity and temperature are discussed in detail. The second and more general case is that we consider the viscous dissipation in the energy equation. Under this assumption, the energy equation is reduced to a ordinary differential equation including the Eckert number, whose solution also is solved by HAM.  相似文献   

4.
The energy of solutions of the wave equation with a suitable boundary dissipation decays exponentially to zero as time goes to infinity. We consider the finite-difference space semi-discretization scheme and we analyze whether the decay rate is independent of the mesh size. We focus on the one-dimensional case. First we show that the decay rate of the energy of the classical semi-discrete system in which the 1?d Laplacian is replaced by a three-point finite difference scheme is not uniform with respect to the net-spacing size h. Actually, the decay rate tends to zero as h goes to zero. Then we prove that adding a suitable vanishing numerical viscosity term leads to a uniform (with respect to the mesh size) exponential decay of the energy of solutions. This numerical viscosity term damps out the high frequency numerical spurious oscillations while the convergence of the scheme towards the original damped wave equation is kept. Our method of proof relies essentially on discrete multiplier techniques.  相似文献   

5.
An analytical solution of the heat transfer problem with viscous dissipation for non-Newtonian fluids with power-law model in the thermal entrance region of a circular pipe and two parallel plates under constant heat flux conditions is obtained using eigenvalue approach by suitably replacing one of the boundary conditions by total energy balance equation. Analytical expressions for the wall and the bulk temperatures and the local Nusselt number are presented. The results are in close agreement with those obtained by implicit finite-difference scheme. It is found that the role of viscous dissipation on heat transfer is completely different for heating and cooling conditions at the wall. The results for the case of cooling at the wall are of interest in the design of the oil pipe line.  相似文献   

6.
We consider a model of fluid-structure interaction in a bounded domain Ω∈ℝ2 where Ω is comprised of two open adjacent sub-domains occupied, respectively, by the solid and the fluid. This leads to a study of Navier Stokes equation coupled on the interface to the dynamic system of elasticity. The characteristic feature of this coupled model is that the resolvent is not compact and the energy function characterizing balance of the total energy is weakly degenerated. These combined with the lack of mechanical dissipation and intrinsic nonlinearity of the dynamics render the problem of asymptotic stability rather delicate. Indeed, the only source of dissipation is the viscosity effect propagated from the fluid via interface. It will be shown that under suitable geometric conditions imposed on the geometry of the interface, finite energy function associated with weak solutions converges to zero when the time t converges to infinity. The required geometric conditions result from the presence of the pressure acting upon the solid.  相似文献   

7.
A mixed problem for a linear second-order hyperbolic equation with antidissipation inside the domain and dissipation on a part of the boundary is considered. It is proved that for certain relations between the antidissipation inside the domain and the dissipation on the part of the boundary, the energy of the system exponentially decreases, whereas for sufficiently large antidissipation inside the domain the boundary dissipation has no effect on the energy of the system; in this case the energy remains unbounded. Translated fromMatematicheskie Zametki, Vol. 59, No. 4, pp. 483–488, April, 1996.  相似文献   

8.
This paper is concerned with the equations of non‐stationary motion in 3D of heat‐conducting incompressible viscous fluids with temperature‐dependent viscosity. The conservation of internal energy includes the usual dissipation term. We prove the existence of a ‘weak solution with defect measure’ to the system of PDEs under consideration. Our method of proof is based on a regularization of the equations of conservation of momentum. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
We consider an initial value problem for a system of equations describing the motion and the heat convection in a viscous and incompressible fluid which occupies a smooth region Ωt⊂ℝ3 depending on time. In the equation for the distribution of temperature in the fluid we take into account not only the convective term but also the term responsible for the dissipation of energy. We prove local in time existence and uniqueness of solutions of the considered problem, and global in time existence for sufficiently small data. © 1997 by B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

10.
We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H?1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
This article addresses a wave equation on a exterior domain in ? d (d odd) with nonlinear time-dependent dissipation. Under a microlocal geometric condition we prove that the decay rates of the local energy functional are obtained by solving a nonlinear non-autonomous differential equation  相似文献   

12.
An analysis has been presented to investigate the effect of temperature-dependent viscosity on non-Darcy MHD mixed convective heat transfer past a porous medium by taking into account of Ohmic dissipation and non-uniform heat source/sink. Thermal boundary layer equation takes into account of viscous dissipation and Ohmic dissipation due to transverse magnetic field and electric field. The governing fundamental equations are first transformed into system of ordinary differential equations using self-similarity transformation and are solved numerically by using the fifth-order Runge–Kutta–Fehlberg method with shooting technique for various values of the physical parameters. The effects of variable viscosity, porosity, Eckert number, Prandtl number, magnetic field, electric field and non-uniform heat source/sink parameters on velocity and temperature profiles are analyzed and discussed. Favorable comparisons with previously published work on various special cases of the problem are obtained. Numerical results on the development of the local skin-friction co-efficient and local Nusselt number with non-uniform heat source/sink are tabulated for various physical parameters to show the interesting aspects of the solution.  相似文献   

13.
14.
I. Kurniawan  G. Dirr  U. Helmke 《PAMM》2007,7(1):4130045-4130046
In this paper we study the accessibility properties of finite dimensional (N-level) open quantum systems in the presence of dissipation and relaxation described by the Lindblad master equation. We specifically focus on the unital Lindbladian case where general results can be obtained. The theory of transitive Lie-group actions is used to classify the system Lie-algebras of the Lindblad equation for which the reachable sets have nonempty interior. For the special case of n -coupled spin-1/2 systems, we obtain a particularly simple characterization. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We consider a simple (1+1)-dimensional model for the Casimir–Polder interaction consisting of two oscillators coupled to a scalar field. We include dissipation in a first-principles approach by allowing the oscillators to interact with heat baths. For this system, we derive an expression for the free energy in terms of real frequencies. From this representation, we derive the Matsubara representation for the case with dissipation. We consider the case of vanishing intrinsic frequencies of the oscillators and show that the contribution from the zeroth Matsubara frequency is modified in this case and no problem with the laws of thermodynamics appears.  相似文献   

16.
In this paper we study the homogeneous relativistic heat equation (HRHE) obtained as asymptotic limit of the so-called relativistic heat equation (RHE) when the kinematic viscosity ν → ∞. These equations were introduced in the theory of radiation hydrodynamics to guarantee a bounded speed of propagation of radiating energy. We shall prove that this is indeed true, and we shall construct some explicit solutions of the HRHE exhibiting fronts propagating at light speed.  相似文献   

17.
18.
The effect of thermal radiation with a regular three-parameter perturbation analysis has been studied for the effects in some free convection flows of Newtonian fluid-saturated porous medium. The effects of the thermal radiation, permeability of the porous medium, pressure stress work and viscous dissipation on the flows and temperature fields have been included in the analysis. Four different vertical flows have been analyzed, those adjacent to an isothermal surface, uniform heat flux surface, a plane plume and flow generated from a horizontal line energy source, and, a vertical adiabatic surface. Rosseland approximation is used to describe the radiative heat flux in the energy equation. The numerical results of the perturbation analysis for four conditions are solved numerically by the fourth-order Runge–Kutta integration scheme. Numerical values of the main physical quantities are the skin friction and a heat transfer and total heat and mass convected downstream are presented in a tabular form with the parameters characterizing the radiation, permeability of the porous medium, pressure stress work and viscous dissipation. The obtained results are compared and a representative set is displayed graphically to illustrate the influences of the radiation, permeability of the porous medium, pressure stress work and viscous dissipation on the velocity and the temperature profiles.  相似文献   

19.
This paper is concerned with some uniform energy decay estimates of solutions to the linear wave equations with strong dissipation in the exterior domain case. We shall derive the decay rate such as $(1+t)E(t)\le C$\nopagenumbers\end for some kinds of weighted initial data, where E(t) represents the total energy. Our method is based on the combination of the argument due to Ikehata–Matsuyama with the Hardy inequality, which is an improvement of Morawetz method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
The Liapunov method is celebrated for its strength to establish strong decay of solutions of damped equations. Extensions to infinite dimensional settings have been studied by several authors (see e.g. Haraux, 1991 [11], and Komornik and Zuazua, 1990 [17] and references therein). Results on optimal energy decay rates under general conditions of the feedback is far from being complete. The purpose of this paper is to show that general dissipative vibrating systems have structural properties due to dissipation. We present a general approach based on convexity arguments to establish sharp optimal or quasi-optimal upper energy decay rates for these systems, and on comparison principles based on the dissipation property, and interpolation inequalities (in the infinite dimensional case) for lower bounds of the energy. We stress the fact that this method works for finite as well as infinite dimensional vibrating systems and as well as for applications to semi-discretized nonlinear damped vibrating PDE's. A part of this approach has been introduced in Alabau-Boussouira (2004, 2005) [1] and [2]. In the present paper, we identify a new, simple and explicit criteria to select a class of nonlinear feedbacks, for which we prove a simplified explicit energy decay formula comparatively to the more general but also more complex formula we give in Alabau-Boussouira (2004, 2005) [1] and [2]. Moreover, we prove optimality of the decay rates for this class, in the finite dimensional case. This class includes a wide range of feedbacks, ranging from very weak nonlinear dissipation (exponentially decaying in a neighborhood of zero), to polynomial, or polynomial-logarithmic decaying feedbacks at the origin. In the infinite dimensional case, we establish a comparison principle on the energy of sufficiently smooth solutions through the dissipation relation. This principle relies on suitable interpolation inequalities. It allows us to give lower bounds for the energy of smooth initial data for the one-dimensional wave equation with a distributed polynomial damping, which improves Haraux (1995) [12] lower estimate of the energy for this case. We also establish lower bounds in the multi-dimensional case for sufficiently smooth solutions when such solutions exist. We further mention applications of these various results to several classes of PDE's, namely: the locally and boundary damped multi-dimensional wave equation, the locally damped plate equation and the globally damped coupled Timoshenko beams system but it applies to several other examples. Furthermore, we show that these optimal energy decay results apply to finite dimensional systems obtained from spatial discretization of infinite dimensional damped systems. We illustrate these results on the one-dimensional locally damped wave and plate equations discretized by finite differences and give the optimal energy decay rates for these two examples. These optimal rates are not uniform with respect to the discretization parameter. We also discuss and explain why optimality results have to be stated differently for feedbacks close to linear behavior at the origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号