首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
计及材料物性与温度的相关性,基于Clausius不等式和L-S广义热弹性理论,通过对自由能公式的高阶展开,构建了具有变物性特征的广义耦合热弹性动力学模型。推导了各向同性材料表面受热冲击问题的线性化控制方程组,利用热冲击的瞬时特征,借助于Laplace正、逆变换技术及其极限性质,给出了变物性条件下一维热冲击问题的温度场、位移场和应力场的渐近表达式。通过算例,得到了热冲击作用下各物理场的分布规律以及材料物性与温度相关性对于热弹性响应的影响规律。结果表明:材料物性与温度相关性对于各物理场的阶跃位置、阶跃间隔以及阶跃峰值均产生影响,但值得注意的是,相比于位移场和应力场的显著影响,其对温度场的影响效果并不明显。  相似文献   

2.
计及材料物性与温度的相关性,基于Green-Naghdi能量无耗散广义热弹性理论(G-N II理论),对热冲击下具有变物性特征材料的热弹性响应进行了求解分析。借助Laplace正、反变换技术以及Krichhoff变换,在热物性参数随真实温度呈线性规律的前提下,推导了半无限大体受热冲击作用时热弹性响应的解析表达式,通过求解分析,得到了热冲击下热波、热弹性波的传播规律,位移场、温度场以及应力场的分布情况,以及物性随温度相关性对热弹性响应的影响效果。结果表明:当考虑材料物性随温度的变化时,热波、热弹性波的传播以及各物理场的分布均受到不同程度的影响,且物性随温度相关性对热弹性响应的作用效果将受到材料热-力耦合特性的影响。  相似文献   

3.
计及材料物性与温度的相关性,基于Green-Naghdi能量无耗散广义热弹性理论(G-N II理论),对热冲击下具有变物性特征材料的热弹性响应进行了求解分析.借助Laplace正、反变换技术以及Krichhoff变换,在热物性参数随真实温度呈线性规律的前提下,推导了半无限大体受热冲击作用时热弹性响应的解析表达式,通过求解分析,得到了热冲击下热波、热弹性波的传播规律,位移场、温度场以及应力场的分布情况,以及物性随温度相关性对热弹性响应的影响效果.结果表明:当考虑材料物性随温度的变化时,热波、热弹性波的传播以及各物理场的分布均受到不同程度的影响,且物性随温度相关性对热弹性响应的作用效果将受到材料热-力耦合特性的影响.  相似文献   

4.
左宏  陈宜亨 《力学学报》1999,31(4):493-497
通过对微裂纹屏蔽不同来源的分析及计算,发现在各向同性脆性材料中,残余应力释放引起的微裂纹对主裂尖产生最大屏蔽效应时该微裂纹的倾角与最大张应力的方向没有明显的对应关系.在Hutchinson[1]所指出的屏蔽效应的第二个来源中,还应计及微裂纹形成引起的远场应力在微裂纹处产生的应力场的释放从而导致应力场的再分布.  相似文献   

5.
粉末热压扩散与应力场耦合的力学模型   总被引:3,自引:0,他引:3  
吴艳青  黄风雷 《力学学报》2008,40(4):550-556
以弹性接触应力场为初始条件,建立了热压条件下球形颗粒表面扩散与应力场耦合的力学模型. 引入包含表面能项级数形式的应力函数,以描述随时间演化的表面扩散过程及扩散对应力场演化的影响. 而应力场通过改变化学势梯度,又会促进(或阻止)表面扩散结合的进程.利用该模型分析了压力、温度和界面区应力场演化对致密化参数的影响. 比较了满足粘着或非粘着对结合宽度和应力分布的影响,将考虑粘着的弹性接触应力场作为初始条件,分析了弹性变形和表面扩散共同驱动的粉末冶金热压烧结致密化规律.   相似文献   

6.
厚度微米级热界面材料的热物性参数,可通过相敏瞬态热反射测量法拟合得出。本文对该方法的原理进行了发展研究:基于数据测量过程中,不同调制频率区间对应在样品中的热穿透深度不同(高频区间内热穿透深度小,低频区间内热穿透深度大),提出针对多层材料,分频率段依次对各层热参数拟合的方法。本方法的途径是通过不同频率区间的选择,沿着热穿透方向依次对各层参数进行拟合,从而减少后层材料未知参数对当前层参数拟合的影响,同时减少对已知参数条件的要求,提高了拟合结果的质量。用本文方法对四层材料样品做了测量及拟合数据对比,结果表明拟合结果相对误差保持在±8%之内,同时对界面热导的信号敏感度进行了分析,发现拟合参数的信号敏感度依赖于频率的选择。  相似文献   

7.
基于带有两个热松弛时间的G-L广义热弹性理论, 利用有限元方法研究了零阻抗理想界面层合板在瞬态热冲击诱导的位移、应力和温度等通过界面时的热弹性行为. 通过比较不同层中材料的比热容、热导系数、热松弛时间和密度等对界面处的位移、应力和温度的影响, 研究了不同材料参数对复合材料热力学行为影响, 发现不同材料参数将导致热穿过界面时界面处温度、位移和应力发生突变, 研究结果可以为由热引起的层合板挠曲变形提供理论依据.   相似文献   

8.
几种金属材料断裂形式变化规律的试验分析   总被引:8,自引:0,他引:8  
汤安民  王静 《实验力学》2003,18(4):440-444
本文研究了几种金属材料在常规破坏试验过程中的断裂现象,分析了不同材料不同复合比下断裂力学试验结果,结果表明,材料在不同受力形式下,随应力状态参数兄从大向小改变,材料断裂机理从以孔洞扩张、聚合为主导,向局部剪切带产生、发展为主导转化,材料断裂形式、断裂条件也随着发生变化,通过试验结果与应力场分析,讨论了不同应力状态参数下,金属材料韧性断裂形式的变化规律。  相似文献   

9.
分析了嵌入无限大弹性板中的圆板在变温时的热屈曲问题。由于圆板的热膨胀系数与无限大弹性板的热膨胀系数不同,温度变化时圆板中会产生压应力。当压应力达到其临界值时,圆板会发生热屈曲。首先,基于弹性力学平面应力问题的基本理论,得到圆板和无限大弹性板的应力和位移;然后建立圆板热屈曲的控制微分方程,求得临界屈曲温度的解析解和数值解,着重讨论圆板和无限大弹性板的材料物性参数的关系对圆板临界屈曲温度的影响。  相似文献   

10.
焊趾表面裂纹的形态发展曲线与疲劳寿命预测   总被引:4,自引:0,他引:4  
以作者建立的焊地椭圆表面裂纹应力强度因子数据库以及复杂应力场中焊践半随圆表面裂纹前缘应力强度因子分布计算的基本模式法为基础上,给出了复杂应力场中焊践表面表纹在疲劳扩展过程中形态变化规律及寿命的工程分析方法。  相似文献   

11.
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue,cracking,etc.Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process.In this paper,the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated.Firstly,dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method.Secondly,the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method.Furthermore,related empirical formulas were given for each dimensionless parameter based on the simulation results.Finally,comparison was made and good agreement was found between the simulation results and the empirical formula,which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.  相似文献   

12.
钻孔法测量残余应力过程中钻孔附加应变   总被引:3,自引:0,他引:3  
本文叙述了钻孔法测量残余应力过程中的附加应变.研究应力水平对附加应变的影响是在单向应力条件下进行的,结果表明,钻孔条件、材料状态以及残余应力达到一定值时,附加应变为零.  相似文献   

13.
Applied stresses on a residual stress model have previously been obtained by measuring the residual stresses and the resultant stresses generated by applying a load. The present paper reports that the applied stresses and the residual stresses on the residual stress model can be obtained by measuring two resultant stresses generated by applying loads of two different magnitudes. In the proposed method, the residual stresses need not be obtained from the residual stress model before applying a load. The residual stress model used to test the proposed method is a circular disk with frozen stresses that is subjected to a diametral compressive load at a certain angle. The applied stresses and the residual stresses on a residual stress model were experimentally and precisely obtained by digital photoelasticity using linearly polarized light.  相似文献   

14.
The traditional contour method maps a single component of residual stress by cutting a body carefully in two and measuring the contour of the cut surface. The cut also exposes previously inaccessible regions of the body to residual stress measurement using a variety of other techniques, but the stresses have been changed by the relaxation after cutting. In this paper, it is shown that superposition of stresses measured post-cutting with results from the contour method analysis can determine the original (pre-cut) residual stresses. The general superposition theory using Bueckner’s principle is developed and limitations are discussed. The procedure is experimentally demonstrated by determining the triaxial residual stress state on a cross section plane. The 2024-T351 aluminum alloy test specimen was a disk plastically indented to produce multiaxial residual stresses. After cutting the disk in half, the stresses on the cut surface of one half were determined with X-ray diffraction and with hole drilling on the other half. To determine the original residual stresses, the measured surface stresses were superimposed with the change stress calculated by the contour method. Within uncertainty, the results agreed with neutron diffraction measurements taken on an uncut disk.  相似文献   

15.
对激光冲击强化后的压力容器材料Q345R钢的耐腐蚀性能和抗疲劳性能进行研究。通过电化学实验,并结合扫描电子显微镜分析其耐腐蚀性。结果显示,有吸收层保护和无吸收层保护激光冲击后,相较于原试样,耐腐蚀性分别提升5.8倍和2.6倍;微观实验结果表明经过激光冲击后腐蚀试样表面裂纹明显少于未处理试样。但随着冲击次数增加,耐腐蚀性有所下降。疲劳试验结果显示,相同应力条件下,腐蚀1和2 h的疲劳寿命相较于原试样降低36.8%和56.4%,经过一次或三次激光冲击后试件的疲劳寿命分别提升43.8%和198.2%,经XRD检测,激光冲击能在表面形成一定深度的残余压应力层并抑制裂纹扩展。  相似文献   

16.
汽轮机动叶片的可靠性设计方法   总被引:3,自引:0,他引:3  
提出了汽轮机叶片可靠性设计方法,介绍了叶片可靠性的含义和计算方法。该方法以概率论和统计学为基础,把汽轮机叶片的静应力、动应力、叶片疲劳强度、叶片安全倍率、叶片振动频率和激振力频率处理为随机变量,通过试验数据的统计分析和计算,确定有关随机变量的分布参数。使用概率设计法、应力与强度干涉模型确定汽轮机叶片疲劳强度和振动设计的可靠度。文中给出了叶片疲劳强度的动应力设计法和安全倍率设计法以及第一种调频叶片、第二种调频叶片和整圈连接叶片组的振动可靠性设计的计算公式和一些应用实例。使用这些方法,可以在设计阶段确定汽轮机叶片设计的可靠度,为汽轮机叶片的可靠性设计提供了科学的依据。  相似文献   

17.
Nuclear-grade Zircaloy-4(R) tubes are produced by a unique manufacturing process known as pilgering, which leaves the material in a work-hardened state containing a pattern of residual stresses. Moreover, such tubes exhibit elastic anisotropy as a result of the pilgering process. Therefore, standard equations originally proposed by Sachs (Z Met Kd, 19: 352–357, 1927; Sachs, Espey, Iron Age, 148: 63–71, 1941). for isotropic materials do not apply in this situation. Voyiadjis et al. (Exp Mech, 25: 145–147, 1985) proposed a set of equations for treating elastically anisotropic materials, but we have determined that there are discrepancies in their equations. In this paper, we present the derivation for a set of new equations for treating elastically anisotropic materials, and the application of these equations to residual stress measurements in Zr-4(R) tubes. To this end, through thickness distribution of residual stress components in as-received and heat treated (500°C) Zr-4(R) tubes was measured employing the Sachs’ boring-out technique in conjunction with electrochemical machining as the means of material removal, and our new equations. For both as-received and the heat treated materials, the axial and tangential residual stresses were significantly higher than the radial and shear residual stresses. The largest residual stress was the tangential stress component in the as-received material, showing a tensile value at the outer surface and a compressive value at the inner surface. At high values of von Mises equivalent stress, the principal directions of residual stress coincided with the principal axes of the tube for the as-received material, as well as for the material heat treated at 500°C.  相似文献   

18.
An experimental method is described which can measure the direction and magnitude of residual and applied stress in metals. The method uses optical interference to measure the permanent surface deformation around a shallow spherical indentation in a polished area on the metal specimen. The deviation from circularly symmetrical surface deformations is measured at known values of applied stress in calibration specimens. This deviation from symmetry can then be used to determine the direction and magnitude of tensile residual stress in specimens of the same material. Determination of compressive residual stress is more limited. A model of the indentation process is offered which qualitatively describes experimental results in 4340 steel for both tensile and compressive stress. The model assumes that the deformation around an indentation os controlled by stresses analogous to those around a hole in an elastic plate. Various conditions are discussed which affect the indentation process and its use to measure stress, including (a) the rigidity of support of the indentor and specimen, (b) the size and depth of the indentation, (c) the uniaxial stress-strain behavior of the specimen material.  相似文献   

19.
In general industry, especially in the nuclear industry, welding overlay repair is an important repair method mainly used to rebuild piping systems suffering from intergranular stress-corrosion cracking (IGSCC).The pipe surface is mechanically ground to obtain a smooth surface after the welding overlay repair. A better understanding of the effect of repair and grinding processes on the residual stresses at the surface of weld overlay is required. To obtain this understanding, it is necessary to measure directly the distribution of residual stresses on the specimen. It is expected that compressive residual stress should be induced at the inner wall surface of the pipe for prevention of IGSCC.The performance evaluation of welding overlay repair relies on whether or not the level and characteristic of the residual stress can be measured accurately. In this study, the hole-drilling strain-gage method, using the incremental drilling technique, was adopted to estimate the residual stresses on the inner and outer walls of the weld overlay pipe. The experimental results indicate that the residual stress at the pipe inner surface is compressive while that of the outer surface is tensile. Also, it is found that the depth affected by grinding is about 1.016 mm.  相似文献   

20.
Welded components suffer from high tensile residual stresses close to the weld beads. These stresses seem to be the origin of premature cracking which could result in a catastrophic rupture during operation and a reduction of the lifespan of these components. In this context, the Hydro-Québec’s Research Institute (IREQ) developed a technique of residual stresses relaxation by robotized hammer peening which makes it possible to release stresses close to surface and preserve the mechanical and dimensional properties of manufactured components. Robotized hammer peening was used to induce compressive residual stresses on initially stress free samples of austenitic stainless steel 304L. Hammer peening layers from one to nine were performed and the resulting residual stresses were evaluated thanks to the contour technique. Complete 2D residual stress fields on samples cross sections were obtained. The ability of hammer peening to relax residual stresses within welded plates was then quantified on austenitic stainless steel 304L plates welded with a 308 steel and hammer peened. These tests show the efficiency of hammer peening as a method to relax tensile residual stresses and induce compressive ones to a depth of a few millimetres. Process parameters were optimized such as the number of hammer peening layers to be applied to reduce processing time and maximization of the intensity and spatial distribution of the compressive residual stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号