首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and properties of heterobimetallic Ti-M complexes of type {[[Ti](μ-η12-CCSiMe3)][M(μ-η12-CCSiMe3)(CO)4]} (M = Mo: 5, [Ti] = (η5-C5H5)2Ti; 6, [Ti] = (η5-C5H4SiMe3)2Ti; M = W: 7, [Ti] = (η5-C5H5)2Ti; 8, [Ti] = (η5-C5H4SiMe3)2Ti) and {[Ti](μ-η12-CCSiMe3)2}MO2 (M = Mo: 13, [Ti] = (η5-C5H5)2Ti; 14, [Ti] = (η5-C5H4SiMe3)2Ti). M = W: 15, [Ti] = (η5-C5H5)2Ti; 16, [Ti] = (η5-C5H4SiMe3)2Ti) are reported. Compounds 5-8 were accessible by treatment of [Ti](CCSiMe3)2 (1, [Ti] = (η5-C5H5)2Ti; 2, [Ti] = (η5-C5H4SiMe3)2Ti) with [M(CO)5(thf)] (3, M = Mo; 4, M = W) or [M(CO)4(nbd)] (9, M = Mo; 10, M = W; nbd = bicyclo[2.2.1]hepta-2,5-diene), while 13-16 could be obtained either by the subsequent reaction of 1 and 2 with [M(CO)3(MeCN)3] (11, M = Mo; 12, M = W) and oxygen, or directly by oxidation of 5-8 with air. A mechanism for the formation of 5-8 is postulated based on the in-situ generation of [Ti](CCSiMe3)((η2-CCSiMe3)M(CO)5), {[Ti](μ-η12-CCSiMe3)2}-M(CO)4, and [Ti](μ-η12-CCSiMe3)((μ-CCSiMe3)M(CO)4) as a result of the chelating effect exerted by the bis(alkynyl) titanocene fragment and the steric constraints imposed by the M(CO)4 entity.The molecular structure of 5 in the solid state were determined by single crystal X-ray diffraction analysis. In doubly alkynyl-bridged 5 the alkynides are bridging the metals Ti and Mo as a σ-donor to one metal and as a π-donor to the other with the [Ti](CCSiMe3)2Mo core being planar.  相似文献   

2.
FTIR spectra of the four isotopically substituted 1:1 complexes of acetonitrile and boron trifluoride were recorded in Ar, N2 and Xe matrices. In Ar, previously unreported three vibrational modes of the complex were clearly observed. Several significant vibrational bands were also observed in N2 and Xe. The observed frequency shifts on complexation, Δν, were qualitatively in good agreement with the computational results, which were calculated at the B3LYP/6-311++G(d,p) level using the optimized geometry of the C3v eclipsed conformation. The observed magnitudes of Δν for most of the complex bands were larger than the calculated values. The BF3 symmetric deformation mode is an exception. The observed frequency shits for this mode were smaller than the calculated values, especially in N2. This suggests that even an inert matrix can significantly affect the vibrational spectrum of the complex.  相似文献   

3.
ZrO3 and HfO3 molecules were prepared via reactions of metal monoxides with dioxygen in solid argon and were characterized using matrix isolation infrared absorption spectroscopy as well as theoretical calculations. Unlike the titanium monoxide molecule, which reacted spontaneously with dioxygen to form TiO3, the ZrO and HfO molecules reacted with dioxygen to give the ZrO3 and HfO3 molecules only under visible light irradiation. Density functional calculations predicted that both the ZrO3 and HfO3 molecules possess a closed-shell singlet ground state with a non-planar C8 geometry, in which the side-on coordinated O2 falls into the peroxide category.  相似文献   

4.
The reactions of Hf+, Ta+, and W+ with O2 and CO are studied as a function of translational energy in a guided ion beam tandem mass spectrometer. All three reactions with O2 form diatomic metal oxide cations in exothermic reactions that occur at the collision rate. In the CO systems, formation of both diatomic metal oxide and metal carbide cations is observed to be endothermic. The energy-dependent cross sections in the latter systems are interpreted to give 0 K bond energies (in eV) of D0(HfC+) = 3.19 ± 0.03, D0(TaC+) = 3.79 ± 0.04, D0(WC+) = 4.76 ± 0.09, D0(HfO+) = 6.91 ± 0.11, D0(TaO+) = 7.10 ± 0.12, and D0(WO+) = 6.77 ± 0.07. The present experimental values for TaO+ and WC+ agree well with literature thermochemistry, those for HfO+ and WO+ refine the available literature bond energies, and those for HfC+ and TaC+ are the first measurements available. The nature of the bonding in MO+ and MC+ is discussed and compared for these three metal ions and analyzed using theoretical calculations at a B3LYP/HW+/6-311+G(3df) level of theory. Bond energies for all MO+ and MC+ species are calculated using geometries calculated at this level and single point energies determined at B3LYP, CCSD, CCSD(T), QCISD, and QCISD(T) levels of theory with the same basis set. Reasonable agreement between the theoretical and experimental bond energies for the three metal oxide and three metal carbide cations is found. Potential energy surfaces for reaction of the metal cations with CO are also calculated at the B3LYP level of theory and reveal additional information about the reaction mechanisms.  相似文献   

5.
Matrix isolation has been combined with infrared spectroscopy to study the reaction chemistry of CrCl2O2 with (CH3)2O and (CH3)2CO. Very similar results were obtained with twin jet and room temperature merged jet deposition, indicating that the initial product forms on the surface of the matrix during deposition, not in the deposition lines prior to matrix condensation. The initial product in both systems was identified as the 1:1 complex between the two reagents, with a structure in which the oxygen atom of the base donates electron density to the Cr center. A number of perturbed vibrational modes of both subunits were observed; for the bases, these modes were vibrations involving the oxygen atom. Hg arc irradiation of the CrCl2O2·O(CH3)2 complex led to growth of a secondary product that is tentatively identified as Cl2CrO(OCH3)2. The CrCl2O2·OC(CH3)2 complex was not photosensitive, and no rearrangements were observed.  相似文献   

6.
Rui Yang  Yu Gong  Mingfei Zhou   《Chemical physics》2007,340(1-3):134-140
The reaction products of palladium atoms with molecular oxygen in solid argon have been investigated using matrix isolation infrared absorption spectroscopy and quantum chemical calculations. In addition to the previously reported mononuclear palladium–dioxygen complexes: Pd(η2–O2) and Pd(η2–O2)2, dinuclear palladium–dioxygen complexes: Pd22–O2) and Pd22–O2)2 were formed under visible light irradiation and were identified on the basis of isotopic substitution and theoretical calculations. In addition, experiments doped with xenon in argon coupled with theoretical calculations suggest that the Pd(η2–O2), Pd22–O2) and Pd22–O2)2 complexes are coordinated by two argon or xenon atoms in solid argon matrix, and therefore, should be regarded as the Pd(η2–O2)(Ng)2, Pd22–O2)(Ng)2 and Pd22–O2)2(Ng)2 (NgAr or Xe) complexes isolated in solid argon.  相似文献   

7.
Reaction of laser ablated zinc and cadmium atoms with SO2 molecules was studied by low temperature matrix isolation infrared spectroscopy. Cyclic M(SO2) and anion M(SO2)- (M=Zn, Cd) were produced in excess argon and neon, which were identified by 34SO2 and S18O2 isotopic substitutions. The observed infrared spectra and molecular structures were confirmed by density functional theoretical calculations. Natural charge distributions indicated significant electron transfer from s orbitals of zinc or cadmium metal atom to SO2 ligand and cyclic M(SO2) complexes favored “ion pair” M+(SO2)- formation, which were trapped in low temperature matrices. In addition Zn-O or Cd-O bond in M(SO2) exhibited strong polarized covalent character. Reaction of Hg atom with SO2 was also investigated, but no reaction product was observed, due to the relativistic effect that resulted in the contraction of 6s valence shell and high ionization potential of Hg atom  相似文献   

8.
Three new tetrahedral rhenium cluster compounds [Re4Se4(PMe2Ph)4Br8]·1.5CH2Cl2 (1), [Re4Te4(PMe2Ph)4Br8]·CH2Cl2 (2), and [Re4Te4(PMe2Ph)4Cl8]·CH2Cl2 (3) have been synthesized by the reaction of the corresponding precursor chalcohalide complexes [Re4Q4(TeX2)4X8] (X = Br, Q = Se (for 1), Te (for 2); X = Cl, Q = Te (for 3)) with dimethylphenylphosphine in CH2Cl2. All compounds have been characterized by X-ray single-crystal diffraction and elemental analyses, IR and 31P NMR spectroscopy. 31P NMR spectroscopy indicates the formation of isomers in solution, confirmed by single-crystal X-ray analysis.  相似文献   

9.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

10.
Infrared and Raman spectra for metal–string complexes M3(dpa)4X2 (M = Ni, Co, dpa = di(2-pyridyl)amido, and X = Cl, NCS) are studied. We assign the Ni3 asymmetric stretching vibration to infrared lines at 304 and 311 cm−1 for Ni3(dpa)2Cl2 and Ni3(dpa)2(NCS)2, respectively. A Raman shift at 242 cm−1 is assigned to the Ni3 symmetric stretching mode. For Co3 complexes a line for the Co3 asymmetric stretching mode appears at 313 and 331 cm−1 for Co3(dpa)2Cl2 and Co3(dpa)2(NCS)2, respectively.  相似文献   

11.
We reported sulfonated poly(ether ether ketone) (SPEEK, 61% degree of sulfonation)–metal oxides (MO2:SiO2, TiO2 and ZrO2)–polyaniline composite membranes. Metal oxides were incorporated into the swelled SPEEK membrane by sol–gel method and cured by thermal treatment. SPEEK–metal oxide membranes surfaces were modified with polyaniline (PANI) by a redox polymerization process. It was observed that water retention capacity of membrane was increased and methanol permeability was reduced due to synergetic effect of metal oxides and surface modification with polyaniline. These composite membranes showed extremely low methanol permeability (1.9–1.3 × 10−7 cm2 s−1), which was lower than till reported values either for SPEEK–metal oxide or SPEEK/PANI membranes. Relatively high selectivity parameter (SP) values at 343 K of these membranes, especially S–SiO2–PANI and S–TiO2–PANI, indicated their great advantages over Nafion117 (N117) membrane for targeting on moderate temperature applications due to the synergetic effect of MO2 and PANI in SPEEK matrix. S–TiO2–PANI and N117 showed comparable cell performance in direct methanol fuel cell (DMFC).  相似文献   

12.
The high-pressure structures and properties of MH2 (M = Nb, Ta) are explored through an ab initio evolutionary algorithm for crystal structure prediction and first-principles calculations. It is found that NbH2 undergoes a phase transition from a cubic Fm3¯m structure with regular NbH8 cubes to an orthorhombic Pnma structure with fascinating distorted NbH9 tetrakaidecahedrons at 48.8 GPa, while the phase transition pressure of TaH2 from a hexagonal P63mc phase with slightly distorted TaH7 decahedron to an orthorhombic Pnma phase with attractive distorted TaH9 tetrakaidecahedrons is about 90.0 GPa. Besides, the calculated electronic band structure and density of states demonstrate that all of these structures are metallic. The Poisson’s ratio, electron localization function, and Bader charge analysis suggest that these phases possess dominant ionic bonding character with the effective charges transferring from the metal atom to H. From our electron–phonon calculations, the calculated superconducting critical temperature Tc of the Pnma-NbH2 is 6.903 K at 50 GPa. Finally, via the quasi-harmonic approximation method, the phase diagrams at pressure up to 300 GPa and temperature up to 1000 K of MH2 (M = Nb, Ta) are established, where the transition pressure of Fm3¯m-NbH2 → Pnma-NbH2 and P63mc-TaH2 → Pnma-TaH2 were found to decrease with increasing temperature.  相似文献   

13.
A photochemical study of allyl iron complexes of the type, (η3-2-R-C3H4)Fe(CO)(NO)(X) (R = H or Cl; X = CO or PPh3) is presented. These compounds were studied in solid matrixes at 20 K, and at room temperature, by a combination of laser flash at 355 nm and steady-state photolysis. The predominant photochemical process for these compounds is loss of a CO ligand. In addition, exhaustive irradiation of (η3-2-R-C3H4)Fe(CO)(NO)(PPh3) with λexc > 300 nm provided evidence for a haptotropic shift of the allyl group from η3 to η1 coordination.  相似文献   

14.
Two novel polyoxometalate derivatives, {XIVWVI10WV2O40[Cu(en)2(H2O)]3} [X=V (1), Si (2); en=ethylenediamine], have been hydrothermally synthesized and characterized by elemental analyses, IR, UV–Vis, XPS, EPR, TG and single crystal X-ray diffraction analyses. They represent the first classical Keggin polyoxoanion supported by three transition metal complex moieties, which further act as the neutral molecular unit for the construction of the interesting three-dimensional supramolecular frameworks. The magnetic properties of 1 have also been studied in the temperature range of 4–300 K, and its magnetic susceptibility obeys the Curie–Weiss law, showing antiferromagnetic coupling.  相似文献   

15.
16.
The compounds (NH4)3[Ta(O2)4], K3[Ta(O2)4], Rb3[Ta(O2)4] and Cs3[Ta(O2)4] have been prepared and investigated by X-ray powder methods as well as Raman- and IR-spectroscopy. In the case of Rb3[Ta(O2)4] the structure has been solved from single crystal data. It is shown that all these compounds are isotypic and crystallize in the K3[Cr(O2)4] type (SG , No. 121). The infrared- and Raman spectra (recorded on powdered samples) are discussed with respect to the internal vibrations of the peroxo-group and the dodecahedral [Ta(O2)4]3− ion. Symmetry coordinates for the [Ta(O2)4]3− ion are given from which the vibrational modes of the O-O stretching vibrations of the O22− groups, the Ta-O stretching vibrations and the Ta-O bending vibrations are deduced.  相似文献   

17.
Photodynamic properties of series of metal complexes having the general formula [M(diars)2X2]ClO4 or BF4 where M = Co3+, Cr3+, Rh3+; X = Cl, Br, I, diars = o-phenylene bis(dimethylarsine) are studied. Photogeneration of singlet oxygen is monitored by both optical and EPR methods. In comparison with rose bengal ((1O2) for RB = 0.76), singlet oxygen generating efficiencies of these complexes are determined. Rate of N,N-dimethyl-4-nitrosoaniline (RNO) bleaching is found to be retarded by specific 1O2 quencher NaN3, confirming the involvement of 1O2 as an active intermediate. Photolysis of these complexes in the presence of spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) generates 12-line EPR spectra, characteristic of O2 adduct. Photogeneration of O2 is also monitored by optical spectroscopy using superoxide dismutase (SOD) inhibitable cytochrome c reduction assay. The results indicate that the [Co(diars)2Br2]ClO4 complex possesses high ability to generate reactive oxygen species (ROS). Both Type I and II paths are involved in the photosensitisation of the metal complexes. The antimicrobial activity of the complexes against selected bacteria is estimated. The relationship between the enzymatic production of ROS and antimicrobial activity of the complexes is examined and a good correlation between two factors is found. The [CoBr2(diars)2]ClO4 complex investigated in this study effect photo cleavage of the plasmid DNA (pUC18).  相似文献   

18.
Based on the ligand dppz (dppz = dipyrido-[3,2-a:2′,3′-c]phenazine), a new ligand pbtp (pbtp = 4,5,9,11,14-pentaaza-benzo[b]triphenylene) and its polypyridyl ruthenium(II) complexes [Ru(phen)2(pbtp)]2+ (1) (phen = 1,10-phenanthroline and [Ru(bpy)2(pbtp)]2+ (2) (bpy = 2,2′-bipyridine) have been synthesized and characterized by elemental analysis, ES-MS and 1H NMR spectroscopy. The DNA-binding of these complexes were investigated by spectroscopic methods and viscosity measurements. The experimental results indicate that both complexes 1 and 2 bind to CT-DNA in classical intercalation mode, and can enantioselectively interact with CT-DNA. It is interesting to note that the pbtp ruthenium(II) complexes, in contrast to the analogous dppz complexes, do not show fluorescent behavior when intercalated into DNA. When irradiated at 365 nm, both complexes promote the photocleavage of pBR 322 DNA.  相似文献   

19.
20.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号