首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

5.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

8.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
分别采用直接(ds)和后合成法(ps)合成含铝的介孔分子筛Al(ds or ps)KIT-1。 以钛酸四丁酯Ti(OEt)4为钛源,将钛嫁接在AlKIT-1表面制备出Ti-AlKIT-1样品。 用傅里叶变换红外光谱、X射线粉末衍射、固体核磁共振(MAS NMR)、固体紫外 可见漫反射光谱(DRS)、能谱(EDS)和N2吸附-脱附对样品进行了表征,并以双氧水氧化环己醇为探针考察了样品的催化活性。 实验结果表明,分子筛Ti-AlKIT-1具有规整的介孔孔道结构,钛进入介孔分子筛骨架而成为四配位的骨架钛,铝的存在形式与样品AlKIT-1的预处理有关,经铵溶液洗涤的Al(ds)KIT-1中没有非骨架铝。 Ti-AlKIT-1在催化双氧水氧化环己醇反应中铝和钛存在明显的协同作用。 样品Ti-Al(ds)KIT-1表现出更高的催化作用,这与其具有较高的比表面积、较大的孔容和较高钛铝比有关,80 ℃反应48 h,重复使用3次后,环己醇的转化率降低至51.3%,仅下降4.31%。  相似文献   

12.
采用后合成法将磷酸固载在纯硅介孔分子筛KIT-1表面上,制备出了表面含磷酸的样品P-KIT-1.利用X射线粉末衍射(XRD),红外光谱(IR)、低温N2吸附-脱附等手段对样品结构进行了表征,用化学滴定法测定了样品的表面酸性,以对苯二酚与叔丁醇的烷基化反应为探针反应对催化剂的性能进行了评价.实验结果表明,样品P-KIT-1保持了基体分子筛KIT-1的介孔结构,由于磷酸占据了分子筛的内外表面,占据了孔道内部空间,使其比表面积、孔容和孔径都减小,但减少不大.随着磷酸负载量的增加,样品的酸量和催化活性也随之增加,当磷酸负载量为7%时催化活性为最好,且明显高于微孔 ZSM-5和β沸石,说明该催化剂样品在烷基化反应中的活性除了与样品的酸量有关外还与孔径的大小有关,是大分子反应有用的固体酸催化剂.  相似文献   

13.
KIT-1介孔分子筛的化学修饰及吸附性能   总被引:1,自引:0,他引:1  
介孔分子筛MCM-41具有较大、可调的孔径和较高的比表面积,其骨架组成具有较强的可调变性.为该材料的应用提供了很大的空间。但全硅MCM-41分子筛在潮湿空气中,即使在室温条件下也会发生水解反应,使其介孔结构遭到破坏。前人已针对MCM-41分子筛稳定性不足的问题相继合成了稳定性较高的介孔分子筛KIT-1,  相似文献   

14.
通过单独水解混合成胶在静态条件下采用水热晶化及水热后处理,在模版剂用量较低和n(Ti)/n(Si)高达1/4的条件下合成了钛硅中孔材料.XRD、FT-IR、UV-Vis DRS和催化选择氧化反应表征结果表明,新合成方法有效防止了成胶过程在高钛含量下产生不溶性钛硅物种,合成产物呈高度有序的MCM-41六方结构,并具有较高的热稳定性和催化选择氧化反应活性.四丁基氢氧化铵在成胶过程不仅有利于钛形成稳定的可溶性物种从而提高其利用率,同时还促进孔墙内基本结构单元的交联和有序化.  相似文献   

15.
以聚甲基丙烯酸甲酯微球为模板,分别以钛酸四丁酯和四异丙醇钛为钛源,通过溶胶-凝胶法辅助模板法制得TiO2纳米微球前驱体,并用程序升温控制其焙烧温度,最终成功制得了具有三维有序介孔/大孔复合结构的TiO2微球.以罗丹明B(RhB)为模型污染物,探索了以不同钛源制备得到的介孔/大孔复合TiO2微球的光催化性能;并采用XRD、SEM、TEM、UV-vis DRS、比表面积测试、光催化性能测试等对样品的晶粒尺寸、物相、形貌、光吸收、比表面积及性能等进行了分析.结果表明,运用溶胶凝胶法辅助模板法能够合成结晶度高、形貌规整、比表面积大、光催化活性良好的锐钛矿相TiO2微球.  相似文献   

16.
何静  郭宗英  邓玲玲  段雪 《化学学报》2002,60(6):1035-1039
以合成后表面接枝的方式制备了长程结构和孔结构均较好的Ti接枝KIT-1催化 剂,将其用于苯羟化反应,研究了Ti接枝KIT-1催化剂的苯羟化学性能和稳定性, 结果发现:Ti接枝KIT-1催化剂对苯羟化过程表现出化学亲和选择性,即使在过氧 化氢过量的条件下,也可避免深度氧化的进行;Ti接枝KIT-1催化剂在苯羟化过程 中表现出较好的结构稳定性。  相似文献   

17.
 以硅溶胶和TiCl3水溶液为原料,采用水热合成方法制备了结晶度和长程有序性较高的中孔Ti-MCM-41分子筛.钛的加入提高了中孔分子筛的长程有序性.辅助模板剂的选择对分子筛的合成很重要,其中以四甲基氢氧化铵和四乙基氢氧化铵作辅助模板剂的效果较好.四甲基氢氧化铵的用量对分子筛的结晶度和长程有序性也有影响,用量过高和过低都会降低分子筛的结晶度.合成的分子筛中的钛含量(摩尔分数)可以达到3.75%,进一步增加钛的含量,将不能合成得到中孔结构的分子筛.  相似文献   

18.
1992年美国Mobil公司首次报道了以离子型表面活性剂为模板剂通过水热法合成了中孔二氧化硅及硅铝材料,由于此类材料具有较大的孔径和比表面积以及优良的吸附性能,在较大的分子或基团的反应中具有较大的优势,引起了催化、吸附分离、无机合成及材料科学等许多领域研究者的广泛关注,许多不含硅的具有半导体性能的中孔氧化物材料在光催化、气体传感、局部氧化、完全燃烧、NOx降解、加氢脱硫等方面显示出优良的性能,二氧化钛是一类应用很广的氧化物。  相似文献   

19.
Here we demonstrate for the first time the encapsulation of a chiral oxazaborolidine complex in the 3D mesoporous channels of an amine functionalized KIT-6 material via covalent bonding through a post-synthetic approach. The physico-chemical properties of the pure and immobilized KIT-6 catalysts were obtained by various techniques such as XRD, nitrogen adsorption, HRSEM, UV-Vis diffuse reflectance spectroscopy, and FT-IR spectroscopy. It has been found that the structural stability of the KIT-6 was not affected even after the immobilization of a significant amount of chiral ligand inside the mesoporous channels of the support. However, the values of structural parameters such as the specific surface area and the specific pore volume of the KIT-6 support was significantly lower than the pure KIT-6 support. The chemical interaction between the chiral ligand inside the mesochannels and the KIT-6 support was also confirmed by UV-Vis and FT-IR spectroscopy. The chiral catalytic performance of the immobilized catalysts for the enantioselective reduction of aromatic prochiral ketones was demonstrated and the results were compared with chiral catalyst immobilized supports with uni-dimensional porous structures, such as MCM-41 and SBA-15. Among the catalysts studied, chiral catalyst immobilized KIT-6 showed the highest performance with a high product yield and a high enantioselectivity due to its 3D porous structure with two continuous and interpenetrating systems of chiral channels and an interwoven 3D cylindrical type pores of Ia3d symmetry. The catalyst also exhibited much better recycling capability than other chiral catalyst supported mesoporous materials used in the study.  相似文献   

20.
The ordered mesoporous MCM-41 materials incorporated with lacunary polyoxometalate were prepared via an original direct synthesis method. As the control, the samples with similar lacunary polyoxometalate loadings were also prepared by impregnation of MCM-41. The prepared samples were characterized by XRF, XRD, FT-IR, Raman spectra, HRTEM, SEM, N(2) adsorption isotherm, TG-DTA, and NH(3)-TPD technology. The results show that the lacunary polyoxometalate is better dispersed in the direct synthesized samples than in the impregnated samples, and its structure remains intact after formation of the materials. The catalytic performance of the materials was tested using the esterification of n-butanol with acetic acid. The direct synthesized samples display excellent catalytic performance and reusability, which is superior to the impregnated samples. Under the optimized conditions, the conversion of n-butanol is 89.7%, and the selectivity of butyl acetate is nearly 100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号