首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Abstract— Irradiation (λmax 447 nm; 58.5 W m-2) of a microsomal membrane fraction of corn coleoptiles for 5 min in the presence of the in vivo concentration of riboflavin inactivates the tonoplast-type H+-ATPase. This inhibition is O2-dependent, is enhanced in D2O and suppressed by NaN3, indicating participation of singlet molecular oxygen in the inactivating mechanism. Besides singlet oxygen, the superoxide anion (O2-) is generated during irradiation, which obviously has no effect on the H+-pumping activity. However, in the presence of superoxide dismutase (SOD), O2- is transformed into H2O2 which causes an additional strong inhibition of H+. ATPase activity. This inhibition can be increased by ethylenediaminetetraacetic acid (EDTA), which is known to be an electron donor of the excited flavin molecule. In contrast, catalase prevents the H2O2-mediated photoinactivation of the H+ -ATPase. The light dependent inactivation of H+-transport does not occur if reduced glutathion (GSH) is added prior to or after irradiation. These results indicate that the blue light mediated inhibition of the H+-ATPase is mediated by singlet oxygen and H2O2 which oxidize essential SH-groups of the enzyme into disulfides. Reduction of the formed disulfides by GSH restores the activity of the enzyme.  相似文献   

2.
Although the first reactive oxygen species (ROS) formed during irradiation of photosensitized cells is almost invariably singlet molecular oxygen (1O2), other ROS have been implicated in the phototoxic effects of photodynamic therapy (PDT). Among these are superoxide anion radical (O2), hydrogen peroxide (H2O2) and hydroxyl radical (OH). In this study, we investigated the role of H2O2 in the pro-apoptotic response to PDT in murine leukemia P388 cells. A primary route for detoxification of cellular H2O2 involves the peroxisomal enzyme catalase. Inhibition of catalase activity by 3-amino-1,2,4-triazole led to an increased apoptotic response. PDT-induced apoptosis was impaired by addition of an exogenous recombinant catalase analog (CAT- skl) that was specifically designed to enter cells and more efficiently localize in peroxisomes. A similar effect was observed upon addition of 2,2'-bipyridine, a reagent that can chelate Fe+2, a co-factor in the Fenton reaction that results in the conversion of H2O2 to OH. These results provide evidence that formation of H2O2 during irradiation of photosensitized cells contributes to PDT efficacy.  相似文献   

3.
In a reaction mixture containing hematoporphyrin derivative, deoxyribose, Fe3+-EDTA and either methionine or tryptophan, hydroxyl radicals were formed during illumination with visible light. When either hematoporphyrin derivative, Fe3+-EDTA or the amino acid was omitted from the reaction mixture, the generation of hydroxyl radicals ceased. These observations suggest an iron-catalyzed Haber-Weiss reaction, involving superoxide and hydrogen peroxide in the generation of hydroxyl radicals. It could be shown that with methionine H2O2 was indeed an essential intermediate in the reaction sequence. With tryptophan, however, H2O2, was not generated. Apparently a photooxidation product of tryptophan could replace H2O2 in the OH-generating reaction with Fe2+-EDTA. Although superoxide was generated in the reaction mixture, it was not an indispensable intermediate. Apparently a porphyrin radical, formed via photoexcitation of hematoporphyrin derivative, could replace superoxide in the Haber-Weiss reaction.  相似文献   

4.
Abstract— Photooxidation reactions in ascorbate (AH)-containing erythrocyte membrane suspensions have been studied in broad perspective by simultaneously monitoring lipid peroxidation in the membrane compartment and formation of hydrogen peroxide (H2O2) and hydroxyl radical (OH) in the aqueous compartment. Non-bound uroporphyrin (UP) and membrane-bound protoporphyrin (PP) were used as sensitizers. Photoreduction of UP to the radical anion (UP-) was detected by electron spin resonance when UP/AH/membrane mixtures were irradiated anaerobically. Aerobic irradiation resulted in a strong AH--stimulation of lipid peroxidation, H2O2 formation, and OH- generation (detected with 2-deoxyribose (DOR) and the spin trap 5,5-dimethyl-l-pyrroline-N-oxide). Use of diagnostic agents (e.g. catalase, desferrioxamine, mannitol) revealed that OH- is involved in light-stimulated DOR oxidation, but not in lipid peroxidation. Similar irradiation in the presence of PP resulted in far greater lipid peroxidation than observed with UP, but less DOR oxidation, and insignificant accumulation of H2O2. This suggests that photoreduction of membrane-bound PP is less efficient, possibly due to hindered access of AH-.  相似文献   

5.
Abstract— –In the light, isolated spinach thylakoids consumed O2 in the presence of methylviologen, and ascorbate was found to interact with this reaction in various ways. Chelating-resin was used to remove metal impurities from the assay medium. Ascorbate diminished the H202 pool in resin-untreated solutions, while in resin-treated solutions ascorbate had no effect on H2O2 concentrations. A Fenton catalyst (Fe-EDTA) increased O2 uptake in the presence of ascorbate and decreased the amount of O2 recovered by catalase. Ascorbate tripled the rate of the methylviologen-mediated Mehler reaction, and the O2 consumed was liberated to 50% of its original concentration by catalase. Superoxide dismutase reversed the effects of ascorbate on the Mehler reaction rates. These results indicate that ascorbate can stimulate Mehler reactions indirectly by promoting a Fenton-type reaction as well as stimulating Mehler reactions directly by reducing 2O2- to 2H2O2. The promotion of a Fenton-type reaction by ascorbate appears to be the cause of H2O2 depletion in resin-untreated solutions.  相似文献   

6.
Abstract— The autoxidation of the catecholamine neurotoxin 6-hydroxydopamine (20 μ M ) gave rise to a chemiluminescence which was greatly stimulated by FeSO4 (20 μ M ) or by hydrogen peroxide addition (20 μ M to 2 m M ). The luminescence of both 6-hydroxydopamine alone or 6-hydroxydopamine plus hydrogen peroxide was strongly inhibited by catalase and by superoxide dismutase (both at 10 μg/m/); bovine serum albumin at 10 μg/m/ had no inhibitory effect. The luminescence was also strongly inhibited by several potent hydroxyl radical trapping agents and also by low concentrations of the 1O2 quencher DABCO (l,4-diazabicyclo-2.2.2.-octane). Chemiluminescence was greatly enhanced in D2O, a solvent in which 1O2 has a prolonged lifetime. These data demonstrate the involvement of hydrogen peroxide, the superoxide radical and the hydroxyl radical in the chemiluminescence. The data are also consistent with some role for 1O2.  相似文献   

7.
Abstract— In order to isolate and purify the luminescence system of scale-worms, the scales were homogenized and extracted in the presence of Triton X-100. After chromatography on Bio-Gel A-5m, Sephadex G-75 and DEAE-cellulose, a single peak in luminescence activity was obtained. It showed properties of a membrane protein having a high mol. wt (about 500000) with characteristics of a photoprotein. The photoprotein, for which we suggest the name polynoidin , emits light in response to several reagents that can produce superoxide or hydroxyl radicals, such as H2O2 plus Fe2+, but the luminescence is not triggered by Ca2 +. Oxygen is an absolute requirement for the luminescent reaction. The luminescence has a maximum at 510 nm. The photoprotein is not fluorescent when excited at 350 nm either before or after the luminescent reaction, thus differing distinctly from the green-fluorescent riboflavin in photosomes which is easily separated at the first step of the purification. We suggest a mechanism of the in vivo luminescence of scale worms in which the production of superoxide or hydroxyl radicals by the oxidation of reduced riboflavin could be regulated by Ca2+.  相似文献   

8.
THE ROLE OF O2- IN THE CHEMILUMINESCENCE OF LUMINOL*   总被引:1,自引:0,他引:1  
Abstract— The chemiluminescence of luminol in buffered aqueous solutions is inhibited by superoxide dismutase. This occurs whether the luminescence is induced by ferricyanide, persulfate, hypochlorite, or by the action of xanthine oxidase on xanthine. Since superoxide dismutase inhibits reactions which involve O2-, we conclude that this radical is a constant factor in the chemiluminescence of luminol in aqueous solutions. The kinetics of light production are discussed in terms of hypothetical mechanisms that fit the available data. The strong luminescence of luminol in aprotic solvents or in aqueous systems containing relatively high concentrations of H2O2 could not be explored in this way, because superoxide dismutase is inactive under such conditions.  相似文献   

9.
Abstract— The apparent K m for O2 in the photoreduction of molecular oxygen by spinach class II chloroplasts and photosystem I subchloroplast fragments was determined. In both cases, a value of 2 ∼ 3 μ M O2 was obtained. The reaction rate constant between O2 and P-430, the primary electron acceptor of PS I, is estimated to be ∼ 1.5 × 107 M -1 s-1 and the factors affecting the production of superoxide by the photoreduction of O2 in chloroplasts are discussed. Preliminary evidence is presented indicating the occurrence of an azide-insensitive scavenging system for H2O2 in chloroplast stroma.  相似文献   

10.
Abstract— During the reaction HO2+ HO2 (or O2-) = H2O2+ O2 in aqueous solution, no luminescence in the region 620–720 nm, expected if the product O2 were formed in a singlet state, could be detected. If any singlet O2 is formed, its yield must be less than 10%. Faint luminescence, sometimes found at shorter wavelengths, was shown to arise from reaction of HO2 with impurities in the reagents present.  相似文献   

11.
Abstract— Continuous blue light irradiation of resealed erythrocyte ghosts at 37°C in the presence of uroporphyrin or protoporphyrin results in 1O2-mediated (azide inhibitable) lipid peroxidation and membrane lysis. Lipid peroxidation was assessed by thiobarbituric acid reactivity and by quantitation of total hydroperoxides, while lysis was measured in terms of trappedglucose–6-P release. Low concentrations of ascorbate, AH- (e.g. 0.5 m M ). present at the start of irradiation, significantly enhanced the rates of lysis and peroxidation, whereas relatively high concentrations of AH- (e.g. 15 m M ) inhibited both processes. By way of contrast. AH- produced only a dose-dependent inhibition of the photoinactivation of lysozyme, added as an extramembranous target. No significant AH-induced lipid peroxidation was observed in dark or light controls, plus porphyrin or minus porphyrin, respectively. Stimulation of peroxidation and lysis by low levels of AH- was enhanced by added Fe(III), abolished by EDTA. but unaffected by catalase or superoxide dismutase. A plausible explanation for these results is as follows. At low concentrations of AH- prooxidant activity is favored. Redox metal-mediated breakdown of photoperoxides occurs, which tends to amplify lipid peroxidation. Neither O2- nor H2O2 appears to be involved. At significantly high concentrations, AH- acts predominantly as an antioxidant by intercepting 1O2 and/or sensitizer triplet, or by scavenging free radical intermediates of lipid peroxidation.  相似文献   

12.
Abstract— The photooxidation of epinephrine, sensitized by methylene blue or by chlorophylls, excited with red light, involves the reduction of two molecules of oxygen to hydrogen peroxide per molecule of epinephrine oxidized to adrenochrome. The initial rates of these reactions are not affected by low concentrations of catalase. In 99 mol % D2O, rates of methylene blue sensitized photooxidations are accelerated as much as 5.2 times over rates in ordinary water. Azide anion is a more effective inhibitor of this reaction in D2O than in H2O. Half maximal inhibitions are obtained by 1.3 mM azide in H2O and by 0.1 mAf azide in D2O. Isotope effects and azide sensitivities point to photooxidation of epinephrine in D2O primarily by a singlet oxygen pathway; in H2O, non-singlet oxygen pathways become more predominant. Superoxide dismutase (SOD) markedly inhibits rates of the photooxidations in H2O and in D2O; about 25% at 10-9 M SOD, and 50% at 10-6 M SOD in H2O. In the photooxidation in H2O, both by non-singlet and singlet oxygen mechanisms, the amount of superoxide produced is equivalent to the amount of O2 consumed in the photooxidation of epinephrine; the superoxide thus formed participates in the oxidation of epinephrine.  相似文献   

13.
Abstract— In many biological systems, the role of O2- in hydroxylation and toxic processes was assumed to be due to the formation of OH radicals. The Haber-Weiss reaction (Haber and Weiss, 1934)—(H2O2+ O2-→ OH + OH-+ O2) was suggested as the origin of this activity.
In this study it is shown that this reaction pathway is too slow, and that OH is probably formed from the reaction of complexed superoxide with H2O2 or/and from the reduction of Fe(III), bound to biological compounds, by O2-; the reduced Fe(II) can then react with H2O2 as a Fenton reagent, to yield OH.
It is also shown that singlet oxygen cannot be formed in these biological systems neither from the dismutation of OJ nor from the reaction of O2- with OH. Singlet oxygen may be formed from the reduction of metal complexes by O2-.  相似文献   

14.
Abstract— The Haber-Weiss cycle:
was investigated at low pH by radiolysis of oxygen or nitrogen saturated solutions of hydrogen peroxide. It was found that reaction 2 has a low rate constant: k 2= 3.0 ± 0.6 M -1 s-1 (pH 2.3, 22°C). The rate determining step of reaction 2 is most probably the transfer of an electron from a π8* orbital of HO2 to the empty u* orbital of H2O2. Overlap between these two orbitals is hindered by the filled π8* orbitals of H2O2. Fe(HI)EDTA catalyses reaction 2.  相似文献   

15.
Abstract In the presence of the photosensitizer riboflavin at high fluence rates a photoproduct, most probably H2O2, is formed which causes negative phototaxis in the colorless flagellate Polytomella magna . The aim of this study was to find out whether H2O2 is produced in a type I or II reaction. As has been shown, 1O2 quenchers either do not influence the photodynamic action of riboflavin (furfuryl ethanol, DPBF, l -histidine, crocetin) or show slight quenching effects only at very high concentrations ≧ 10−2 M (DABCO, DMF, imidazole). D2O is toxic to P. magna even in 1:1 and 1:2 mixtures with H2O. On the other hand, the quenching effect of 1,4-benzoquinone, highly indicative for the type I pathway, is more than two orders of magnitude stronger than the one of the above mentioned 1O2 quenchers. The results suggest that H2O2 is produced in a type I reaction. Superoxide does not seem to be involved since superoxide dismutase does not diminish the photodynamic effect of riboflavin.  相似文献   

16.
The light-emitting principle of the brittle star Ophiopsila californica has been isolated and purified. It was found to be a green-fluorescent photoprotein (molecular weight 45000) which emits green light (λmax 500 nm) when H2O2 is added, independently of the presence or absence of O2. The green fluorescence (emission maximum 500 nm, excitation maximum 440 nm) spectrally coincided with the H2O2-triggered luminescence, indicating that the green fluorescent chromophore is the light-emitter of the photoprotein luminescence.  相似文献   

17.
Abstract— A mutant of Chlamydomonas reinhardtii (NL–11) isolated from a wild type (137c+) was inactivated in the light in the presence of methionine at concentrations where the wild type was not inactivated. The inactivation was suppressed by either catalase or superoxide dismutase (SOD). Light-induced H2O2 formation and nitroblue tetrazolium (NBT) reduction inNL–11 were greater than those in the wild type. Methionine stimulated both the H2O2 formation and the NBT reduction inNL–11 as well as the wild type. The light-induced NBT reduction inNL–11 in the presence of methionine was partially suppressed by externally added SOD suggesting the participation of O-2. These results suggest that the hypersensitivity ofNL–11 to methionine in the light is due to stimulated formation of H2O2 and O-2.  相似文献   

18.
Abstract— –Flash photolysis at 450 nm over the temperature range 0.8–60°C was used to determine Arrhenius parameters for the first and second order disappearance of triplet lumiflavin (1.66 µ .M ) at a flash energy of 2 kj in deaerated phosphate buffer at varying pH:
3Lf → Lf0
3Lf +3Lf → Lf0+ Lf0
Arrhenius parameters were also determined for the pseudo first-order quenching of triplet lumiflavin by 10 µ M ferri- and ferrocyanide ions,
3Lf + Fe3+→ Fe3+→ Lf0+ Fe3+ (energy transfer)
3Lf + Fe2+→ Lf-+ Fe3+ (electron transfer)
and for disappearance of the semireduced lumiflavin in the presence of ferrocyanide at pH 6.8, by the second-order reaction
Lf-+Lf -→ Lf0+ Lf=.  相似文献   

19.
Abstract— The oxidation of purpurogalline (PPG) by alkaline solution of H2O2 pH 9–11 at 298°K is accompanied by chemiluminescence (CL) in the spectral range 400–600 nm with the maximum at 500 nm and quantum yield about 10-6. The optimal concentrations of reactants with respect to maximal intensity are: 2 × 10-4 M PPG, 10-2 M NaOH, 1 M H2O2. Activation energy calculated from the maximum intensity of CL is 8.1×0.4 kcal/mole. Light emission occurs only when OH-groups of the phenolic ring of PPG undergo oxidation and the blue anion of o -PPG-quinone is formed. The rate that determines step in the reaction associated with luminescence is the nucleophilic attack of OOH- ion on the blue anion of o -PPG-quinone. In this exergonic step (-ΔH = 63 to 230kcal/mole) the o - and/or p -quinone ring is opened and carbonyl derivatives of α-tropolone are produced. They display fluorescence in the region 400–600 nm. The fluorescence spectrum of the reaction mixture after oxidation of PPG is very close to that of CL. It is likely that carbonyl derivatives of α-tropolone are emitters of CL.  相似文献   

20.
Abstract— The bioluminescent oxidation of reduced flavin mononucleotide by bacterial luciferase involves a long-lived flavoenzyme intermediate whose chromophore has been postulated to be the 4a-sub-stituted peroxy anion of reduced flavin. Reaction of long chain aldehyde with this intermediate results in light emission and formation of the corresponding acid. These experiments show that the typical aldehyde-dependent, luciferase-catalyzed bioluminescence can also be obtained starting with FMN and H2O2 instead of FMNH2 and O2. We postulate that the 4a-peroxy anion intermediate is formed directly by attack of H2O2 on FMN. The latter may be bound to luciferase. An enzyme bound intermediate is formed which by kinetic analysis, flavin specificity for luminescence, aldehyde dependence, and bioluminescent emission spectrum appears to be identical with the species generated by reaction of FMNH, and O2 with luciferase. The quantum yield of the H2O2-- and FMN-initiated biolumlnescence is low but can be enhanced by certain metal ions, which also stimulate a chemiluminescent reaction of oxidized flavin with H2O2. The peak of this chemiluminescence. however, appears to be at a shorter wavelength than that (490 nm) of the bioluminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号