首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
New organometallic clusters with the MFe2(mu3-S)2 core (M = Mo or Fe) have been synthesized from inorganic [MoFe3S4] or [Fe4S4] clusters under high pressure CO. The reaction of (Cl4-cat)2Mo2Fe6S8(PR3)6[R = Et, (n)Pr] with high pressure CO produced the crystalline [MoFe2S2]4+ clusters, (Cl4-cat)Mo(O)Fe2S2(CO)(n)(PR3)6-n[n= 4, Et =I, (n)Pr =II; n = 5, Et =III] after flash column chromatography. The similar [MoFe2S2]4+ cluster, (Cl4-cat)2MoFe2S2(CO)2(depe)(2)(IV), also has been achieved by the reactions of (Cl4-cat)MoFe3S3(CO)6(PEt3)2 with depe by reductive decoupling of the cluster. For the [Fe3(mu3-S)2]4+ cluster, [Fe4S4(PcHex3)4](BPh4) was reacted with high pressure CO to produce a new Fe3S2(CO)7(PcHex)(2)(V) compound. These reactions generalized the preparation of organometallic compounds from inorganic clusters. All the compounds have been characterized by single crystal X-ray crystallography. A possible reaction pathway for the synthesis of the MFe2(mu3-S) clusters (M = Mo or Fe) has also been suggested.  相似文献   

2.
Density functional theory calculations were carried out on the structurally characterized [(Cl(4)-cat)Mo(py)Fe(3)S(3) (CO)(4)(P(n)Pr(3))(3)], A, and (Cl(4)-cat)Mo(py)Fe(3)S(3)(CO)(6)(PEt(3))(2), B, and also on A(2)(-) and B(2+) clusters. The Fe-Fe distances in these molecules depend on the total number of valence electrons (60 e(-) in A and B(2)(+) and 62 e(-) in A(2)(-) and B) and undergo great structural changes upon addition or removal of electrons. The changes are consistent with known electron-counting rules in organometallic chemistry. The weak nature of the Fe-Fe bonding interactions in these clusters is apparent in the very similar energies of states with widely different Fe-Fe distances.  相似文献   

3.
Our explorations of the reactivity of Fe/Mo/S clusters of some relevance to the FeMoco nitrogenase have led to new double-fused cubane clusters with the Mo2Fe6S8 core as derivatives of the known (Cl4-cat)2Mo2Fe6S8(PPr3)6 (I) fused double cubane. The new clusters have been obtained by substitution reactions of the PPr3 ligands with Cl-, BH4-, and N3-. By careful control of the conditions of these reactions, the clusters [(Cl4-cat)(PPr3)MoFe3S4(BH4)2]2(Bu4N)4 (II), [(Cl4-cat)(PPr3)MoFe3S4(PPr3)(BH4)]2(Bu4N)2 (III), [(Cl4-cat)(PPr3)MoFe3S4(N3)2]2(Bu4N)4 (IV), [(Cl4-cat)(PPr3)MoFe3S4(PPr3)(N3)]2(Bu4N)2 (V), and [(Cl4-cat)(PPr3)MoFe3S4Cl2]2(Et4N)4 (VI) have been obtained and structurally characterized. A study of their electrochemistry shows that the reduction potentials for the derivatives of I are shifted to more positive values than those of I, suggesting a stabilization of the reduced clusters by the anionic ligands BH4- and N3-. Using 1H NMR spectroscopy, we have explored the lability of the BH4- ligand in II in coordinating solvents and its hydridic character, which is apparent in its reactivity toward proton sources such as MeOH or PhOH.  相似文献   

4.
5.
The synthesis and structure of the first Mo/Fe/S/BH(4) cluster is reported. Reaction of (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PPr(3))(6) with 4 equiv of Bu(4)NBH(4) results in the formation of [(Cl(4)-cat)(PPr(3))MoFe(3)S(4)(BH(4))(2)](2)(Bu(4)N)(4) (Cl(4)-cat = tetrachloro-catecholate) which has been fully characterized. X-ray structural determination of this double-fused cubane reveals four BH(4)(-) ligands bound to four Fe atoms in a bidentate fashion. A synopsis of the solution characterization as well as the reactivity of this cluster is also presented.  相似文献   

6.
The clusters [Fe(6)S(8)(PEt(3))(6)](+,2+) have been shown by other investigators to be formed by the reaction of [Fe(OH(2))(6)](2+) and H(2)S, to contain face-capped octahedral Fe(6)S(8) cores, and to be components of the five-membered electron transfer series [Fe(6)S(8)(PEt(3))(6)](n)()(+) (n = 0-4) estalished electrochemically. We have prepared two additional series members. Reaction of [Fe(6)S(8)(PEt(3))(6)](2+) with iodine in dichloromethane affords [Fe(6)S(8)(PEt(3))(6)](3+), isolated as the perchlorate salt (48%). Reduction of [Fe(6)S(8)(PEt(3))(6)](2+) with Na(Ph(2)CO) in acetonitrile/THF produces the neutral cluster [Fe(6)S(8)(PEt(3))(6)] (65%). The structures of the four clusters with n = 0, 1+, 2+, 3+ were determined at 223 K. The compounds [Fe(6)S(8)(PEt(3))(6)](ClO(4))(3), [Fe(6)S(8)(PEt(3))(6)] crystallize in trigonal space group R&thremacr;c with a = 21.691(4), 16.951(4) ?, c = 23.235(6), 19.369(4) ?, and Z = 6, 3. The compounds [Fe(6)S(8)(PEt(3))(6)](BF(4))(2), [Fe(6)S(8)(PEt(3))(6)](BF(4)).2MeCN were obtained in monoclinic space groups P2(1)/c, C2/c with a = 11.673(3), 16.371(4) ?, b = 20.810(5), 16.796(4) ?, c = 12.438(4), 23.617(7) ?, beta = 96.10(2), 97.98(2) degrees, and Z = 2, 4. [Fe(6)S(8)(PEt(3))(6)](BPh(4))(2) occurred in trigonal space group P&onemacr; with a = 11.792(4) ?, b = 14.350(5) ?, c = 15.536(6) ?, alpha = 115.33(3) degrees, beta = 90.34(3) degrees, gamma = 104.49(3) degrees, and Z = 1. Changes in metric features across the series are slight but indicate increasing population of antibonding Fe(6)S(8) core orbitals upon reduction. Zero-field M?ssbauer spectra are consistent with this result, isomer shifts increasing by ca. 0.05 mm/s for each electron added, and indicate a delocalized electronic structure. Magnetic susceptibility measurements together with previously reported results established the ground states S = (3)/(2) (3+), 3 (2+), (7)/(2) (1+), 3 (0). The clusters [Fe(6)S(8)(PEt(3))(6)](n)()(+) possess the structural and electronic features requisite to multisequential electron transfer reactions. This work provides the first example of a cluster type isolated over four consecutive oxidation states. Note is also made of the significance of the [Fe(6)S(8)(PEt(3))(6)](n)()(+) cluster type in the development of iron-sulfur-phosphine cluster chemistry.  相似文献   

7.
The catalytic function of the previously synthesized and characterized [(L)MoFe(3)S(4)Cl(3)](2)(-)(,3)(-) clusters (L = tetrachlorocatecholate, citrate, citramalate, methyliminodiacetate, nitrilotriacetate, thiodiglycolate) and of the [MoFe(3)S(4)Cl(3)(thiolactate)](2)(4)(-) and [(MoFe(3)S(4)Cl(4))(2)(&mgr;-oxalate)](4)(-) clusters in the reduction of N(2)H(4) to NH(3) is reported. In the catalytic reduction, which is carried out at ambient temperature and pressure, cobaltocene and 2,6-lutidinium chloride are supplied externally as electron and proton sources, respectively. In experiments where the N(2)H(4) to the [(L)MoFe(3)S(4)Cl(3)](n)()(-) catalyst ratio is 100:1, and over a period of 30 min, the reduction proceeds to 92% completion for L = citrate, 66% completion for L = citramalate, and 34% completion for L = tetrachlorocatecholate. The [Fe(4)S(4)Cl(4)](2)(-) cluster is totally inactive and gives only background ammonia measurements. Inhibition studies with PEt(3) and CO as inhibitors show a dramatic decrease in the catalytic efficiency. These results are consistent with results obtained previously in our laboratory and strongly suggest that N(2)H(4) activation and reduction occur at the Mo site of the [(L)MoFe(3)S(4)Cl(3)](2)(-)(, 3)(-) clusters. A possible pathway for the N(2)H(4) reduction on a single metal site (Mo) and a possible role for the carboxylate ligand are proposed. The possibility that the Mo-bound polycarboxylate ligand acts as a proton delivery "shuttle" during hydrazine reduction is considered.  相似文献   

8.
Reactions of Pd(PEt(3))(2)Cl(2) and Au(PPh(3))Cl in DMF with NaOH under CO atmosphere gave rise to the unique capped three-shell homopalladium Pd(145)(CO)(x)(PEt(3))(30)(x approximately 60) and two neutral Au-Pd clusters: Au(2)Pd(21)(CO)(20)(PEt(3))(10) (1) and Au(2)Pd(41)(CO)(27)(PEt(3))(15)(following article). Similar reactions with Pd(PMe(3))(2)Cl(2) being used in place of Pd(PEt(3))(2)Cl(2) afforded Au(2)Pd(21)(CO)(20)(PMe(3))(10) (2), the trimethylphosphine analogue of, and the electronically equivalent [AuPd(22)(CO)(20)(PPh(3))(4)(PMe(3))(6)](-) monoanion (3) as the [PPh(4)](+) salt. Each of these three air-sensitive 23-atom heterometallic Au-Pd clusters was obtained in low yields (7-25%); however, their geometrical similarities with the known cuboctahedral-based homopalladium Pd(23)(CO)(20)(PEt(3))(10) (4), recently obtained in good yields from Pd(10)(CO)(12)(PEt(3))(6), suggested an alternative preparative route for obtaining. This "structure-to-synthesis" approach afforded 1 in 60-70% yields from reactions of Pd(10)(CO)(12)(PEt(3))(6) and Au(PPh(3))Cl in DMF with NaOH under N(2) atmosphere. Both the compositions and atomic arrangements for 1, 2 and 3 were unambiguously established from low-temperature single-crystal CCD X-ray crystallographic determinations in accordance with their nearly identical IR carbonyl frequencies. Cluster 1 was also characterized by (31)P[(1)H] NMR, cyclic voltammetry (CV) and elemental analysis. The virtually identical Au(2)Pd(21) core-architectures of 1 and 2 closely resemble that of 4, which consists of a centered hexa(square capped)-cuboctahedral Pd(19) fragment of pseudo-O(h) symmetry that alternatively may be viewed as a centered Pd(19)nu(2)-octahedron (where nu(n) designates (n + 1) equally spaced atoms along each edge). [AuPd(22)(CO)(20)(PPh(3))(4)(PMe(3))(6)](-) (3) in the crystalline state ([PPh(4)](+) salt) consists of two crystallographically independent monoanions 3A and 3B; a superposition analysis ascertained that their geometries are essentially equivalent. A CV indicates that reversibly undergoes two one-electron reductions and two one-electron oxidations; these reversible redox processes form the basis for an integrated structural/electronic picture that is compatible with the existence of the electronically-equivalent 1-3 along with the electronically-nonequivalent 4 (with two fewer CVEs) and other closely related species.  相似文献   

9.
The reactions of the (Et(4)N)(2)[(Cl(4)-cat)(MeCN)MoFe(3)S(4)Cl(3)] (I) cluster with Fe(pp)(2)Cl(2) (pp = depe (bis(1,2-diethylphosphino)ethane) or dmpe (bis(1,2-dimethylphosphino)ethane)) produced the [(Cl(4)-cat)MoFe(3)S(4)(pp)(2)Cl](2)(mu-pp) (pp = depe (III) or dmpe (V)) singly bridged double cubanes. The reactions of I with the same bidentate phosphine ligands in the presence of NaBPh(4) also produced III and the [(Cl(4)-cat)MoFe(3)S(4)(dmpe)(2)](2)(mu-S)(mu-dmpe) (VI) doubly bridged double cubane, respectively. The byproduct (BPh(4))[Fe(dmpe)(2)(MeCN)Cl] (VII) has been isolated from the reaction mixture and crystallographically characterized. The depe analogue of VI, [(Cl(4)-cat)MoFe(3)S(4)(depe)(2)](2)(mu-S)(mu-depe) (IV), has been successfully prepared from III in the presence of excess Li(2)S. Similar reactions with (Et(4)N)(2)[Fe(4)S(4)(SPh)(4)] (VIII) have resulted in the formation of the neutral Fe(4)S(4)(depe)(2)(SPh)(2) (IX) cluster. The chloride analogue of IX, Fe(4)S(4)(depe)(2)Cl(2) (XI), has been obtained by a reaction of IX with benzoyl chloride. The crystal and molecular structures of III, VI, VII, and XI have been determined by single-crystal X-ray crystallography. The electrochemical and spectroscopic properties, including the Mossbauer spectra of the new clusters, have been determined and analyzed.  相似文献   

10.
Two copper-mercury-chalcogenide clusters [Hg(15)Cu(20)E(25)(PPr(3))(18)] (1, E = S; 2, E = Se) are synthesized in good yield from the reaction of (Pr(3)P)(3)Cu-ESiMe(3) and (Pr(3)P)(2).Hg(OAc)(2) at low temperatures. Single-crystal X-ray analyses illustrate that the two ternary clusters are isomorphous and consist of a phosphine-stabilized core of mixed Hg, Cu, and E centers. Thermolysis of 1 leads to the formation of mercury metal and various forms of copper-sulfide. The copper-indium-sulfide cluster [Cu(6)In(8)S(13)Cl(4)(PEt(3))(12)] (3) is similarly prepared in 50% yield from (Et(3)P)(3)Cu-SSiMe(3), InCl(3), and S(SiMe(3))(2).  相似文献   

11.
The structures of the P cluster and cofactor cluster of nitrogenase are well-defined crystallographically. They have been obtained only by biosynthesis; their chemical synthesis remains a challenge. Synthetic routes are sought to the P cluster in the P(N) state in which two cuboidal Fe(3)S(3) units are connected by a mu(6)-S atom and two Fe-(mu(2)-S(Cys))-Fe bridges. A reaction scheme affording a Mo(2)Fe(6)S(9) cluster in molecular form having the topology of the P(N) cluster has been devised. Reaction of the single cubane [(Tp)MoFe(3)S(4)Cl(3)](1)(-) with PEt(3) gives [(Tp)MoFe(3)S(4)(PEt(3))(3)](1+) (2), which upon reduction with BH(4)(-) affords the edge-bridged all-ferrous double cubane [(Tp)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] (4) (Tp = tris(pyrazolylhydroborate(1-)). Treatment of 4 with 3 equiv of HS(-) produces [(Tp)(2)Mo(2)Fe(6)S(9)(SH)(2)](3)(-) (7) as the Et(4)N(+) salt in 86% yield. The structure of 7 is built of two (Tp)MoFe(3)(mu(3)-S)(3) cuboidal fragments bridged by two mu(2)-S atoms and one mu(6)-S atom in an arrangement of idealized C(2) symmetry. The cluster undergoes three one-electron oxidation reactions and is oxidatively cleaved by p-tolylthiol to [(Tp)MoFe(3)S(4)(S-p-tol)(3)](2)(-) and by weak acids to [(Tp)MoFe(3)S(4)(SH)(3)](2-). The cluster core of 7 has the bridging pattern [Mo(2)Fe(6)(mu(2)-S)(2)(mu(3)-S)(6)(mu(6)-S)](1+) with the probable charge distribution [Mo(3+)(2)Fe(2+)(5)Fe(3+)S(9)](1+). Cluster 7 is a topological analogue of the P(N) cluster but differs in having two heteroatoms and two Fe-(mu(2)-S)-Fe instead of two Fe-(mu(2)-S(Cys))-Fe bridges. A best-fit superposition of the two cluster cores affords a weighted rms deviation in atom positions of 0.38 A. Cluster 7 is the first molecular topological analogue of the P(N) cluster. This structure had been prepared previously only as a fragment of complex high-nuclearity Mo-Fe-S clusters.  相似文献   

12.
The first triethylphosphine-stabilized Pt-Au cluster compounds, [Pt(AuPEt(3))(10)](2+) (2) and [Pt(AuPEt(3))(9)](3+) (3), were prepared by the direct reaction of Pt(PEt(3))(3) with AuPEt(3)NO(3) under a dihydrogen atmosphere. Cluster 2 is the highest-nuclearity homoleptic Pt(AuPR(3))(n)() cluster yet prepared. The reactivity and structures of these clusters are in agreement with the well-established electron-counting arguments. The 18-electron cluster 2 was converted into the 16-electron cluster 3 by oxidation with 2 equiv of ferricinium ion [Fe(eta(5)-C(5)H(5))(2)](+). Cluster 3 was converted into 2 by reduction with H(2) in the presence of [AuPEt(3)](+). Cluster 3 was also observed to cleanly add the 2-electron donors CO and PEt(3) to form the 18-electron clusters [(CO)Pt(AuPEt(3))(9)](3+) (4) and [(PEt(3))Pt(AuPEt(3))(9)](3+) (5), respectively. Single-crystal X-ray diffraction results show that 3 has a flattened, toroidal structure in which the PtAu(9) framework has a Pt-centered, tricapped trigonal prismatic geometry. Crystal data for [Pt(AuPEt(3))(9)](NO(3))(3) is as follows: hexagonal P6(3)/m, a = 15.134(5) ?, c = 23.48(1) ?, V = 4657 ?(3), Z = 2, residuals R = 0.056, and R(w)() = 0.053 for 1489 observed reflections and 81 variables, Mo Kalpha radiation. Compound 3 was found to reversibly add H(2) in solution to form the dihydride cluster [(H)(2)Pt(AuPEt(3))(9)](3+) (6). The equilibrium constant for this addition reaction is 1.1 x 10(3) M(-)(1) (CD(2)Cl(2) solution, 25 degrees C), slightly smaller than that for [Pt(AuPPh(3))(8)](2+). The rate of the addition is also slower than that with [Pt(AuPPh(3))(8)](2+). Cluster 3 is an excellent homogeneous catalyst for H(2)-D(2) equilibration giving a turnover rate for HD production of 0.13 s(-)(1) (nitrobenzene solvent, 30 degrees C, 1 atm). The PEt(3)-containing clusters give similar rates and follow the same general trends previously observed with PPh(3)-ligated clusters. The chemistry of these new clusters is explained by consideration of the steric and electronic properties of the PEt(3) ligand. These new compounds will be useful as models for hydrogen activation by Pt-Au clusters and as precursors for supported Pt-Au catalysts.  相似文献   

13.
Site-differentiated solvated clusters of the general formula [Re(6)(mu(3)-Se)(8)(PEt(3))(n)(MeCN)(6)(-)(n)](SbF(6))(2) (n = 4, cis and trans; n = 5) undergo ligand substitution reaction with isonicotinamide to afford the corresponding amide derivatives, [Re(6)(mu(3)-Se)(8)(PEt(3))(n)(isonicotinamide)(6)(-)(n)](2+) [1 (n = 5); 2 (n = 4, trans); 3 (n = 4, cis)]. Retention of stereochemistry in each case was confirmed by (1)H and (31)P NMR. The solid-state structures of all three compounds were established crystallographically, which revealed self-complementary hydrogen-bonding interactions between adjacent cluster units. While complex 1 exists as hydrogen-bonded dimers in the solid state, compounds 2 and 3 form one-dimensional chains of clusters bridged by paired hydrogen bonds. It is the rigid stereochemistry of the cluster, combined with the classic crystal engineering motif of complementary N-H.O amide hydrogen bonding, that affords the predictable solid-state structures and dimensionality.  相似文献   

14.
A systematic substitution of the terminal chlorides coordinated to the hexanuclear cluster [Re(6)S(8)Cl(6)](4-) has been conducted. The following complexes: [Re(6)S(8)(PEt(3))Cl(5)](3-) (1), cis- (cis-2) and trans-[Re(6)S(8)(PEt(3))(2)Cl(4)](2-) (trans-2), mer- (mer-3) and fac-[Re(6)S(8)(PEt(3))(3)Cl(3)](-) (fac-3), and cis- (cis-4) and trans-[Re(6)S(8)(PEt(3))(4)Cl(2)] (trans-4) were synthesized and fully characterized. Compared to the substitution of the halide ligands of the related [Re(6)S(8)Br(6)](4-) and [Re(6)Se(8)I(6)](3-) clusters, the chloride ligands are slower to substitute which allowed us to prepare the first monophosphine cluster (1). In addition, the synthesis of fac-3 was optimized by using cis-2 as the starting material, which led to a significant increase in the overall yield of this isomer. Notably, we observed evidence of phosphine isomerization taking place during the preparation of the facial isomer; this was unexpected based on the relatively inert nature of the Re-P bond. The structures of Bu(4)N(+) salts of trans-2, mer-3, and fac-3 were determined using X-ray crystallography. All compounds display luminescent behavior. A study of the photophysical properties of these complexes includes measurement of the excited state lifetimes (which ranged from 4.1-7.1 μs), the emission quantum yields, the rates of radiative and non-radiative decay, and the rate of quenching with O(2). Quenching studies verify the triplet state nature of the excited state.  相似文献   

15.
Hauser C  Bill E  Holm RH 《Inorganic chemistry》2002,41(6):1615-1624
A new series of cubane-type [VFe(3)S(4)](z)() clusters (z = 1+, 2+, 3+) has been prepared as possible precursor species for clusters related to those present in vanadium-containing nitrogenase. Treatment of [(HBpz(3))VFe(3)S(4)Cl(3)](2)(-) (2, z = 2+), protected from further reaction at the vanadium site by the tris(pyrazolyl)hydroborate ligand, with ferrocenium ion affords the oxidized cluster [(HBpz(3))VFe(3)S(4)Cl(3)](1)(-) (3, z = 3+). Reaction of 2 with Et(3)P results in chloride substitution to give [(HBpz(3))VFe(3)S(4)(PEt(3))(3)](1+) (4, z = 2+). Reaction of 4 with cobaltocene reduced the cluster with formation of the edge-bridged double-cubane [(HBpz(3))(2)V(2)Fe(6)S(8)(PEt(3))(4)] (5, z = 1+, 1+), which with excess chloride underwent ligand substitution to afford [(HBpz(3))(2)V(2)Fe(6)S(8)Cl(4)](4)(-) (6, z = 1+, 1+). X-ray structures of (Me(4)N)[3], [4](PF(6)), 5, and (Et(4)N)(4)[6] x 2MeCN are described. Cluster 5 is isostructural with previously reported [(Cl(4)cat)(2)(Et(3)P)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] and contains two VFe(3)S(4) cubanes connected across edges by a Fe(2)S(2) rhomb in which the bridging Fe-S distances are shorter than intracubane Fe-S distances. M?ssbauer (2-5), magnetic (2-5), and EPR (2, 4) data are reported and demonstrate an S = 3/2 ground state for 2 and 4 and a diamagnetic ground state for 3. Analysis of (57)Fe isomer shifts based on an empirical correlation between shift and oxidation state and appropriate reference shifts results in two conclusions. (i) The oxidation 2 --> 3 + e(-) results in a change in electron density localized largely or completely on the Fe(3) subcluster and associated sulfur atoms. (ii) The most appropriate charge distributions are [V(3+)Fe(3+)Fe(2+)(2)S(4)](2+) (Fe(2.33+)) for 1, 2, and 4 and [V(3+)Fe(3+)(2)Fe(2+)S(4)](3+) (Fe(2.67+)) for 3 and [V(2)Fe(6)S(8)(SEt)(9)](3+). Conclusion i applies to every MFe(3)S(4) cubane-type cluster thus far examined in different redox states at parity of cluster ligation. The formalistic charge distributions are regarded as the best current approximations to electron distributions in these delocalized species. The isomer shifts require that iron atoms are mixed-valence in each cluster.  相似文献   

16.
Orto PJ  Nichol GS  Wang R  Zheng Z 《Inorganic chemistry》2007,46(21):8436-8438
The first [Re(6)(mu(3)-Se)(8)](2+) core-containing cluster carbonyls, [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(CO)][SbF(6)](2) and trans-[Re(6)(mu(3)-Se)(8)(PEt(3))4(CO)(2)][SbF(6)](2), were produced by reacting [Re(6)(mu(3)-Se)(8)(PEt(3))(5)I]I and trans-[Re(6)(mu(3)-Se)8(PEt(3))(4)I2], respectively, with AgSbF(6) in CO-saturated dichloromethane solutions. Spectroscopic and crystallographic studies suggest significant cluster-to-CO back-donation in these novel cluster derivatives and interesting electronic structures. Thermal and photolytic studies of the mono-carbonyl complex revealed its interesting and synthetically useful reactivity in producing new cluster derivatives.  相似文献   

17.
Gray TG  Holm RH 《Inorganic chemistry》2002,41(16):4211-4216
The site-differentiated, cyanide-substituted hexanuclear rhenium(III) selenide clusters cis- and trans-[Re(6)Se(8)(PEt(3))(4)(CN)(2)] and [Re(6)Se(8)(PEt(3))(5)(CN)](+) have been prepared from heterogeneous reactions of the corresponding iodo clusters with AgCN in refluxing chloroform. Isolated yields are 68%, 46%, and 64% for cis-[Re(6)Se(8)(PEt(3))(4)(CN)(2)], trans-[Re(6)Se(8)(PEt(3))(4)(CN)(2)], and [Re(6)Se(8)(PEt(3))(5)(CN)](+), respectively. The new compounds are air- and water-stable and are characterized by X-ray diffraction crystallography, (31)P NMR and IR spectroscopies, and FAB mass spectrometry. In related work, the solvent exchange rates of two site-differentiated monosolvate clusters, [Re(6)Se(8)(PEt(3))(5)(MeCN)](SbF(6))(2) and [Re(6)Se(8)(PEt(3))(5)(Me(2)SO)](SbF(6))(2), in neat solvents were measured by (1)H NMR. These clusters are substitutionally inert; k approximately 10(-)(5)-10(-)(6) s(-)(1) at 318 K. Activation parameters indicate a dissociative ligand exchange mechanism; DeltaH() values obtained from least-squares fitting of temperature-dependent kinetics data exceed RT by a factor of ca. 50 over the temperature range studied. These results demonstrate that the substitutional lability encountered in a previous study of cluster photophysics (Gray, T. G.; Rudzinski, C. M.; Nocera, D. G.; Holm, R. H. Inorg. Chem. 1999, 38, 5932) cannot result from ground-state thermal reactions.  相似文献   

18.
The reactions of the previously reported cluster complexes [Re(6)(mu(3)-Se)(8)(PEt(3))(5)I]I, trans-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)I(2)], and cis-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)I(2)] with the [Re(6)(mu(3)-Se)(8)](2+) core with CO in the presence of AgSbF(6) afforded the corresponding cluster carbonyls [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(CO)][SbF(6)](2) (), trans-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)(CO)(2)][SbF(6)](2) (), and cis-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)(CO)(2)][SbF(6)](2) (). Infrared spectroscopy indicated weakening of the bond in CO, suggesting the existence of backbonding between the cluster core and the CO ligand(s). Electrochemical studies focusing on the reversible, one-electron oxidation of the cluster core revealed a large increase in the oxidation potential upon going from the acetonitrile derivatives to their carbonyl analogs, consistent with the depleted electron density of the cluster core upon CO ligation. Disparities between the IR spectra and oxidation potential between and indicate that electronic differences exist between sites trans and cis to the location of a ligand of interest. The active role played by the Se atoms in influencing the cluster-to-CO bonding interactions is suggested through this result and density functional (DF) computational analysis. The computations indicate that molecular orbitals near the HOMO account for backbonding interactions with a high percentage of participation of Se orbitals.  相似文献   

19.
Reaction of a mixture of CuCl, PhSnCl(3) and PEt(2)Ph with S(SiMe(3))(2) in THF resulted initially in the unexpected synthesis of the ionic, mixed copper-tin sulfide cluster [Li(thf)(4)][Cu(19)S(28)(SnPh)(12)(PEt(2)Ph)(3)] in low yields. However, by adding NBu(4)Cl to the reaction solutions we were able to selectively synthesize the structurally similar cluster ion in (NBu(4))[Cu(19)S(28)(SnPh)(12)(PEt(2)Ph)(3)]. Structural characterization by single crystal X-ray analysis reveals that the cluster anions consist in principle of a copper sulfide core decorated by PhSn(3+) groups. Although additional phosphine ligands are attached to copper atoms the clusters possess an open 'Cu(3)S(3)' face mostly protected by the [Li(thf)(4)](+) and (NBu(4))(+) counterions in the crystal structure. The cluster (NBu(4))[Cu(19)S(28)(SnPh)(12)(PEt(2)Ph)(3)] displays near-infrared, temperature-dependent photoluminescence at ~820-930 nm in the solid state, which is especially bright at temperatures below ~100 K.  相似文献   

20.
Recent work has shown that cyanide ligation increases the redox potentials of Fe(4)S(4) clusters, enabling the isolation of [Fe(4)S(4)(CN)4]4-, the first synthetic Fe(4)S(4) cluster obtained in the all-ferrous oxidation state (Scott, T. A.; Berlinguette, C. P.; Holm, R. H.; Zhou, H.-C. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 9741). The generality of reduced cluster stabilization has been examined with MoFe(3)S(4) clusters. Reaction of single-cubane [(Tp)MoFe(3)S(4)(PEt(3))3]1+ and edge-bridged double-cubane [(Tp)2Mo(2)Fe(6)S(8)(PEt(3))4] with cyanide in acetonitrile affords [(Tp)MoFe(3)S(4)(CN)3]2- (2) and [(Tp)2Mo(2)Fe(6)S(8)(CN)4]4- (5), respectively. Reduction of 2 with KC(14)H(10) yields [(Tp)MoFe(3)S(4)(CN)3]3- (3). Clusters were isolated in approximately 70-90% yields as Et(4)N+ or Bu(4)N+ salts; clusters 3 and 5 contain all-ferrous cores, and 3 is the first [MoFe(3)S(4)]1+ cluster isolated in substance. The structures of 2 and 3 are very similar; the volume of the reduced cluster core is slightly larger (2.5%), a usual effect upon reduction of cubane-type Fe(4)S(4) and MFe(3)S(4) clusters. Redox potentials and 57Fe isomer shifts of [(Tp)MoFe(3)S(4)L3]2-,3- and [(Tp)2Mo(2)Fe(6)S(8)L(4)]4-,3- clusters with L = CN-, PhS-, halide, and PEt3 are compared. Clusters with pi-donor ligands (L = halide, PhS) exhibit larger isomer shifts and lower (more negative) redox potentials, while pi-acceptor ligands (L = CN, PEt3) induce smaller isomer shifts and higher (less-negative) redox potentials. When the potentials of 3/2 and [(Tp)MoFe(3)S(4)(SPh)3]3-/2- are compared, cyanide stabilizes 3 by 270 mV versus the reduced thiolate cluster, commensurate with the 310 mV stabilization of [Fe(4)S(4)(CN)4]4- versus [Fe(4)S(4)(SPh)4]4- where four ligands differ. These results demonstrate the efficacy of cyanide stabilization of lower cluster oxidation states. (Tp = hydrotris(pyrazolyl)borate(1-)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号