首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
Er,Yb:YAG微晶玻璃发光特性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
高温熔制Er3+,Yb3+离子掺杂CaO-Y2O3-Al2O3-SiO2系统玻璃,并进行微晶化处理,研究了微晶玻璃中Er3+离子的发光及上转换发光特性,分析了微晶玻璃上转换发光机理.结果表明:原始玻璃经热处理得到了Er,Yb:YAG微晶玻璃,微晶玻璃中Er3+离子在室温下4I13/24I15/2跃迁产生横盖1450—1650nm区间的超宽带荧光,荧光半高宽达180nm,这可能由于YAG微晶相中Er3+离子与玻璃相中残留Er3+离子的共同发光;Er3+与Yb3+离子局域基质声子能量的降低使微晶玻璃Er3+离子上转换发光强度与原始玻璃相比显著提高,绿光、红光上转换荧光强度比玻璃样品分别增强约7和3倍;微晶化后Er3+,Yb3+离子局域环境发生变化也导致微晶玻璃中Er3+离子绿光、红光上转换发光相对强度发生变化. 关键词: 铒 镱:钇铝石榴石 微晶玻璃 荧光光谱  相似文献   

2.
Cubic phase Lu2O3:Er3+/Yb3+ nanocrystal phosphors were prepared by sol–gel method. Fourier transform infrared (FT-IR) spectra were measured to evaluate the vibrational feature of the samples. Green and red radiations were observed upon 980 nm diode laser excitation. Laser power and Er3+ or Yb3+ doping concentration dependence of upconversion luminescence were studied to understand upconversion mechanisms. Excited state absorption, cross relaxation and energy transfer processes are the possible mechanisms for the visible emissions.  相似文献   

3.
The YAG nanopowders were prepared by a co-precipitation method using nitrate and ammonium hydrogen carbonate as raw materials. To obtain homogenous precipitate, reverse-strike (adding salt solutions to the precipitant solution) technique was adopted. Therefore, single (Tm3+) and codoped (Tm3+–Yb3+) YAG nanopowders with a size between 40–90 nm have been obtained.Blue upconversion emission at around 480 nm has been found in YAG: Tm3+ nanopowders under excitation to the 3H4 level of Tm3+ at around 800 nm. However, this upconversion emission in nanopowders codoped with Tm3+–Yb3+ ions is increased by a factor of about 10. The analysis of the temporal evolution of the involved levels and the dependence of the upconversion intensity on the pump power at 800 nm allowed to distinguish the upconversion mechanism. In YAG: Tm3+ nanopowders the upconversion mechanism is due to excited state absorption processes. However, in the codoped samples, Yb3+ ions acts as the sensitizers; in consequence, the blue upconversion is strongly increased.  相似文献   

4.
Lutetium oxide nanopowders codoped with Tm3+ and Yb3+ were synthesized by the reverse-strike co-precipitation method. Effects of precipitant solution pH on the structural, morphological and upconversion luminescent properties of Lu2O3:2%Yb, 0.2%Tm nanopowders had been investigated. The results show that pH value of the precipitant (NH4HCO3) solution has a significant effect on the particle size, morphology and upconversion emission intensity of the Lu2O3:2%Yb, 0.2%Tm nanopowders. All the samples obtained from different pH value of precipitant solution can be readily indexed to pure cubic phase of Lu2O3, indicating good crystallinity. The upconversion emission intensity of Lu2O3:2%Yb, 0.2%Tm nanopowders obtained from the precipitant solution with pH=11 is the strongest. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing the number of OH groups and the enlarged nanopowder size. The strong blue, weak red and near infrared emissions from the prepared nanopowders were observed under 980 nm laser excitation, and attributed to the 1G43H6, 1G43F4 and 3H43H6 transitions of Tm3+ ion, respectively.  相似文献   

5.
The absorption and upconversion fluorescence spectra of a series of Er3+/Yb3+-codoped natrium-germanium-bismuth glasses have been studied. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. At room temperature, an upconversion efficiency of 6.1×10−2 has been obtained for the green emission from the glass with 0.5 wt% Er2O3 and 3.0 wt% Yb2O3 pumped by 980 nm radiation with an intensity of 270 W/cm2. And the “standardized” efficiency for green upconversion light is higher than that reported in lead-germanate, lead-tellurite-germanate, and silicate glasses. The results indicate that the Er3+/Yb3+-codoped natrium-germanium-bismuth oxide glass may be a potential material for developing upconversion optic devices.  相似文献   

6.
Yb3+ doped phosphor of Gd2O3 (Gd2O3:Yb3+) have been prepared by solid state reaction method. The structure and the particle size have been determined by X-ray powder diffraction measurements. The average particle size of the phosphor is in between 35 and 50 nm. The particle size and structure of the phosphor was further confirmed by TEM analysis. The visible and NIR luminescence spectra were recorded under the 980 nm laser excitation. The visible upconversion luminescence of Yb3+ ion was due to cooperative luminescence and the presence of rare earth impurity ions. The cooperative upconversion and NIR luminescence spectra as a function of Yb3+ ion concentration were measured and the emission intensity variation with Yb3+ ion concentration was discussed. Yb3+ energy migration quenched the cooperative luminescence of Gd2O3:Yb3+ phosphor with doping level over 5%, while the NIR emission luminescence continuously increases with increasing Yb3+ ion concentration.  相似文献   

7.
Effect of Yb2O3 content on upconversion luminescence and mechanisms in Yb3+-sensitized Tm3+-doped oxyhalide tellurite glasses were investigated under 980 nm excitation. Intense blue and relatively weak red upconversion emission centered at 476 and 649 nm corresponding to the transitions 1G43H6 and 1G43H4 of Tm3+, respectively, are simultaneously observed at room temperature. The results show that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at Yb2O3%=3 mol%, and then decrease with increasing Yb2O3 content. The effect of Yb2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+.  相似文献   

8.
In this work, investigation of the spectroscopic parameters of the luminescence of Yb3+ ions in single crystalline films of Lu3Al5O12 and Y3Al5O12 garnets was performed using the synchrotron radiation excitation with the energy in the range of Yb3+ charge transitions (CT), exciton range and the onset of interband transitions of these garnets. The basic spectroscopic parameters of the Yb3+ CT luminescence in LuAG and YAG hosts were determined and summarized with taking into account the differences in the band gap structure of these garnets.  相似文献   

9.
Tm3+/Yb3+共掺氧卤碲酸盐玻璃上转换发光研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了Tm3+/Yb3+共掺氧卤碲酸盐玻璃的上转换发光光谱,分析了Tm2O3含量对Tm3+/Yb3+共掺氧卤碲酸盐玻璃上转换发光的影响机理.结果表明:在Tm3+/Yb3+共掺氧卤碲酸盐玻璃的上转换发光中,Tm3+存在较强的浓度猝灭效应.随Tm2O3含量增加,Tm3+的上转换蓝光和红光强度先增加,后降低,在0.1mol% Tm2O3达到最大.该结果有助于进一步提高Tm3+的上转换发光效率.  相似文献   

10.
A K SINGH  K KUMAR  S B RAI 《Pramana》2014,82(2):409-412
In the present work, results of upconversion emission in various powder samples have been discussed. The powder upconversion phosphors such as La2O3:Er3+/Yb3+, LaF3:Er3+/Yb3+, CeO2:Er3+/Yb3+, CeF3:Er3+/Yb3+ were prepared and their upconversion emission, using 976 nm wavelength excitation, was investigated in depth. These phosphors have shown good upconversion emission in the visible region except for the CeF3:Er3+/Yb3+ phosphor. Two intense bands around 525 and 550 nm due to the 2 H 11/24 I 15/2 and 4 S 3/24 I 15/2 transitions, respectively, are found to be in a thermally coupled state in these samples. The intensity ratio of these two bands permitted us to estimate the temperature of the environment. The pump power studies of the emission bands of these samples are also made to understand the dynamics of the upconversion emission.  相似文献   

11.
The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence.  相似文献   

12.
To investigate the upconversion emission,this paper synthesizes Tm3+ and Yb3+ codoped Y2O3 nanoparticles,and then coats them with TiO2 shells for different coating times.The spectral results of TiO2 coated nanoparticles indicate that upconversion emission intensities have respectively been enhanced 3.2,5.4,and 2.2 times for coating times of 30,60 and 90 min at an excitation power density of 3.21×102 W.cm 2,in comparison with the emission intensity of non-coated nanoparticles.Therefore it can be concluded that the intense upconversion emission of Y2O3:Tm3+,Yb3+ nanoparticles can be achieved by coating the particle surfaces with a shell of specific thickness.  相似文献   

13.
The concentration-dependent luminescence properties of sol–gel-derived nanocrystalline Lu3(1?x)Er3xGa5O12 powders (where x=0.01, 0.05 and 0.1) have been studied. Laser-excited luminescence spectra, emission decays and upconversion luminescence of Er3+-doped Lu3Ga5O12 nanocrystalline samples have been measured. The decay curve of the (2H11/2,4S3/2) emission exhibits a non-exponential behavior presumably due to cross-relaxation process. Moreover, near-infrared to visible upconversion luminescence has been observed in the green region for 1.0 mol% Er3+ ions in Lu3Ga5O12 nanocrystals upon 815 nm excitation. The power dependence of the anti-Stokes luminescence suggests that upconversion is probably achieved through the sequential absorption of two photons. To the best of our knowledge, this is the first report on the preparation and optical properties of Er3+-doped Lu3Ga5O12 in the form of nanocrystalline powders.  相似文献   

14.
苏方宁  邓再德 《中国物理》2006,15(5):1096-1100
The Er^3+/Yb^3+ co-doped TeO2-Nb2O5-Li2O glass is prepared by conventional melting method, and its upconversion spectra are measured. The intense green upconversion luminescence upon excitation with a 976 nm laser diode is observed with the naked eyes. The dependence of luminescence intensity on the ratio of Yb^3+/Er^3+ is discussed in detail, and the relationship between the ratio of green luminescence intensity to red luminescence intensity and the ratio of Yb^3+/Er^3+ is also studied, The luminescence intensity increases with the ratio of Yb^3+/Er^3+ increasing. The ratio of Yb^3+/Er^3+ plays a more important role than the concentration of Er^3+ in determining the upconversion luminescence intensity. The ratio of green luminescence intensity to red luminescence intensity reaches a maximum when ratio of Yb^3+/Er^3+ is 3. Thus the glass could be one of the potential candidates for LD pumping solid-state lasers.  相似文献   

15.
郝昭  陈晓波  侯延冰  宋峰  王虹  张光寅 《物理学报》1997,46(6):1206-1211
报道在室温下,高浓度Tm和高浓度Yb掺杂的五磷酸盐非晶在966nm半导体激光器激发下,Tm的1G4能级和4F4能级分别产生峰位在480nm波长较强的上转换蓝光发射和很强的近红外780nm荧光发射.这一荧光发射是由于Yb的2F5/2能级对966nm激光的强烈吸收,以及对Tm的相应上转换能级较强的能量传递而产生的上转换过程,Tm的浓度增大又使Tm的3F相似文献   

16.
Ytterbium-doped nano-crystalline powders of yttrium aluminium garnet Y3Al5O12 (Yb3+-doped YAG) have been prepared by a modified Pechini method. The morphology of the annealed materials was observed using SEM images. The structure and the average crystalline grain sizes have been determined by X-ray powder diffraction measurements. An increase in elongated spherical crystalline grain sizes from 20 to 50 nm has been observed with annealing temperature increasing from 800 to 1200 °C. The Yb3+ concentration dependence of both luminescence spectra and lifetimes has been investigated and compared with those reported for the Yb3+-doped YAG bulk single crystals. Decays of Yb3+ 2F5/2 excited state, much longer in nano-crystalline powders than in bulk single crystals, are discussed in terms of refractive index dependence.  相似文献   

17.
Single-crystalline KY1?x?y?z GdxLuyYbz(WO4)2 layers are grown onto undoped KY(WO4)2 substrates by liquid-phase epitaxy. The purpose of co-doping the KY(WO4)2 layer with suitable fractions of Gd3+ and Lu3+ is to achieve lattice-matched layers that allow us to engineer a high refractive-index contrast between waveguiding layer and substrate for obtaining tight optical mode confinement and simultaneously accommodate a large range of Yb3+ doping concentrations by replacing Lu3+ ions of similar ionic radius for a variety of optical amplifier or laser applications. Crack-free layers, up to a maximum lattice mismatch of ~0.08 %, are grown with systematic variations of Y3+, Gd3+, Lu3+, and Yb3+ concentrations, their refractive indices are measured at several wavelengths, and Sellmeier dispersion curves are derived. The influence of co-doping on the spectroscopy of Yb3+ is investigated. As evidenced by the experimental results, the lattice constants, refractive indices, and transition cross-sections of Yb3+ in these co-doped layers can be approximated with good accuracy by weighted averages of data from the pure compounds. The obtained information is exploited to fabricate a twofold refractive-index-engineered sample consisting of a highly Yb3+-doped tapered channel waveguide embedded in a passive planar waveguide, and a cladding-side-pumped channel waveguide laser is demonstrated.  相似文献   

18.
Unusual bright red-dominant upconversion light was observed in Ho3+/Yb3+ co-doped YF3-BaF2-Ba(PO3)2 glasses excited by the 980-nm laser diode at room temperature. The integral intensity ratios of the red upconversion emission to the green one reached about 10:1 in optimized 0.125Ho3+-15Yb3+ co-doped sample. In order to find out its behind-the-scene mechanism, the optical properties and the phonon-assisted relaxations on the excited levels of Ho3+ in our samples were investigated. Additionally, the effects of the concentrations of the doping ions, excitation pump power, and temperature on the upconversion emissions were also systematically studied. These results revealed that the proper phonon frequency of fluorophosphate glasses, the efficient phonon-assisted relaxations from 5I6 to 5I7 levels (4,960 s?1), and the long lifetime of the 5I7 (about 2.8 ms) levels should be responsible for bright red upconversion emission at a much greater concentration ratio of C Yb 3+ /C Ho 3+ .  相似文献   

19.
Pankaj Dutta  S. Rai 《Optik》2011,122(10):858-863
Infrared-to-visible upconversion processes and Judd Ofelt intensity parameters were analyzed for Ho3+ singly doped and Ho3+/Yb3+ co-doped Al(NO3)3-SiO2 glasses with a fixed Ho3+ and Yb3+ concentrations prepared by sol-gel method. Blue and intense green upconversion emissions centered at 467 and 538 nm, corresponding to the and transitions, respectively, were observed under 800 nm excitation. The analysis of the dynamics of upconversion emissions suggest excited state absorption, energy transfer and back transfer as the possible causes for the observed transitions. Significant enhancement of upconversion intensities in Ho3+/Yb3+ co-doped glass compared to the Ho3+ singly doped one confirms efficient energy transfer between Yb3+ and Ho3+ ions. Intense upconversion emissions shown by the glasses in the present study indicate their potential in upconversion device applications.  相似文献   

20.
The ZrO2:Er3+ codoped with Yb3+ phosphor powders have been prepared by the urea combustion route. Formation of the compounds ZrO2:Er3+ and ZrO2:Er3+, Yb3+ was confirmed by XRD. The frequency upconversion emissions in the green and red regions upon excitation with a CW diode laser at ~978 nm are reported. Codoping with Yb3+ enhances the emission intensities of the triply ionized erbium in the green and red spectral regions by about ~130 and ~820 times respectively. The emission properties of the ZrO2:Er3+ phosphor powders are discussed on the basis of excited state absorption, energy transfer, and cross-relaxation energy transfer mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号