首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 919 毫秒
1.
The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence.  相似文献   

2.
The up-conversion emission properties of Yb3+-Ho3+ co-doped germanium-borate glasses have been investigated with 980 nm excitation. The violet, blue, green and red emission bands at about 350, 485, 544 and 653 nm can be identified, respectively. Experimental results indicated that the relative intensity ratios of the peaks IRed/IGreen increased with increasing B2O3 concentration, which led to changing color of up-conversion emission from green at x=0 to yellow at x=40, to red at x=60. The violet emission at 350 nm was first reported in germanium-borate glass host and up-conversion mechanisms of the emissions were discussed. The Yb3+-Ho3+ co-doped germanium-borate glasses could be an alternative for the generation of violet and primary colors for application in solid-state displays.  相似文献   

3.
We report the generation of multi-wavelength visible light through amplified spontaneous emission (ASE) in Er3+-doped and Er3+/Yb3+-doped germanosilicate single-mode optical fiber pumped by a Nd:YLF laser at 1313nm. In the Er3+-doped fiber, the intense multi-wavelength blue emission hnes around 463-510nm corre-spond to transitions born 2G7/2 etc. excited states to the metastable 4I13/2 state, and their pumping mechanists is aecomphshed by a stepwise four-photon absorption. Some emission hnes in this wavelength region are attributed to the three-wave sum-frequency process of 1313 and 1530nm (corresponds to 4I13/2 -4I15/2). The intense green emission hnes at 525 and 540 nm are also observed in the Er3+-doped fiber. In the Er3+/Yb3+-doped fiber the blue and green lines are very weak compared with those in the Er3+-doped fiber.  相似文献   

4.
Yb3+/Ho3+ co-doped calcium aluminate phosphor has been synthesized using solution combustion process. Multicolored (blue, green and red) strong upconversion emission (λexc=980 nm) due to Ho3+ ion is observed which shows a color tunability (from green to red) with a variation in input laser power. The color tunability has been attributed to be due to the induced heating in the local volume of the sample and the temperature produced has been estimated using the fluorescence intensity ratio (FIR) method. The sample shows temperature sensing behavior and more importantly the temperature could be sensed through two pairs of thermally coupled levels, one lying in the green region (5F4/5S25I8) and the other in the blue region (5G4/5G55I8). The temperature sensing through the blue pair of levels is novel in itself. The material thus prepared serves as temperature sensor as well as a source for the production of heat in a localized volume.  相似文献   

5.
李堂刚  刘素文  王恩华  宋灵君 《物理学报》2011,60(7):73201-073201
通过燃烧法制备了Yb3+-Tm3+共掺的Y2O3纳米粉体,并对样品在980 nm激光照射下的上转换发光特性进行了研究.实验发现,样品在可见光区域能够产生强烈的蓝色发光(476 nm和487 nm)和较弱的红色发光(约650 nm),而且同时观察到了两个紫外发光峰1I63H6 (~297 nm)和1关键词: 2O3:Yb3+')" href="#">Y2O3:Yb3+ 3+')" href="#">Tm3+ 上转换光谱 敏化 紫外发光  相似文献   

6.
The host sensitized near‐infrared (NIR) emitting phosphor Sr2CaMoO6:Yb3+ was fabricated by the solid state reaction method. The structural refinement and Raman spectra elucidate that Yb3+ ions preferentially occupy Ca2+ sites. The phosphor can harvest ultraviolet (UV)–blue photons and exhibits intense NIR emission at around 1012 nm with full‐width‐at‐half‐maximum of 1635 cm–1. Moreover, the absolute NIR photoluminesence quantum yield (PLQY) is estimated to be about 9%. The Sr2CaMoO6:Yb3+ phosphor may be a promising luminescence downshifting material for improving the spectral response of solar cells in the UV region. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The present paper reports the combustion synthesis of Yb3+ doped GdAlO3 phosphors. The structural characterization and luminescence spectra of Yb3+ doped GdAlO3 phosphors have been discussed. The effects of variable concentration of Yb3+ on Photoluminescence (PL) behavior were studied. The structural characterization was done by X-ray diffraction (XRD) and Transmission electron microscope technique (TEM). The good connectivity with grains and the semi-sphere line structure was found by TEM. The functional group analysis was carried out by Fourier transform infrared (FTIR) spectroscopic techniques. The prepared phosphor gives emission spectra in visible as well as NIR region. Both emissions were studied as a function of Yb3+ concentration. The emission intensity variation with Yb3+ ion concentration for visible and NIR region were discussed separately. The NIR emission luminescence of GdAlO3:Yb3+ phosphor luminescence continuously increases with increasing Yb3+ ion concentration.  相似文献   

8.
Yb3+ and Er3+ co-doped YAB powders were prepared by sol-gel method. The structure and fluorescence properties were investigated. XRD pattern indicated that the single phase was obtained at 1150°C and the structure belonged to rhombohedral. Under 379 nm excitation, two emissions around 983 nm and 1531 nm were observed and the effect of Yb3+ ion concentration on the emission intensity was discussed. The energy transfer was observed under 930 nm excitation and the energy transfer efficiencies for all samples were calculated. The lifetimes of 2 F 5/2 level of Yb3+ ion and 4 I 13/2 level of Er3+ ion were measured and the effect of Yb3+ ion concentration on the lifetime was also discussed. The results indicated that there was an additional mechanism for the decay of 4 I 13/2 level in powder samples. The Yb3+ and Er3+ co-doped YAB powders should be a potential candidate for ceramic laser materials.  相似文献   

9.
Yb3+ doped phosphor of Gd2O3 (Gd2O3:Yb3+) have been prepared by solid state reaction method. The structure and the particle size have been determined by X-ray powder diffraction measurements. The average particle size of the phosphor is in between 35 and 50 nm. The particle size and structure of the phosphor was further confirmed by TEM analysis. The visible and NIR luminescence spectra were recorded under the 980 nm laser excitation. The visible upconversion luminescence of Yb3+ ion was due to cooperative luminescence and the presence of rare earth impurity ions. The cooperative upconversion and NIR luminescence spectra as a function of Yb3+ ion concentration were measured and the emission intensity variation with Yb3+ ion concentration was discussed. Yb3+ energy migration quenched the cooperative luminescence of Gd2O3:Yb3+ phosphor with doping level over 5%, while the NIR emission luminescence continuously increases with increasing Yb3+ ion concentration.  相似文献   

10.
Nd3+, Tm3+ and Yb3+ co-doped NaYF4 upconversion (UC) material was synthesized by the hydrothermal method. The structure of the sample was characterized by the X-ray diffraction, and its UC luminescence properties were investigated in detail. Under the 980 nm semiconductor laser excitation, its UC spectra exhibited distinct emission peaks at 451 nm, 475 nm and 646 nm respectively. On the basis of the comparison of UC spectra between NaYF4:Nd3+,Tm3+,Yb3+ and NaYF4:Tm3+,Yb3+, it was indicated that the existence of Nd3+ ion enhanced the blue emission intensity. The law of luminescence intensity versus pump power proved that the blue emission at 475 nm, and the red emission at 646 nm were the two-photon processes, while the blue emission at 451 nm was a three-photon process.  相似文献   

11.
The up-conversion (UC) and near infrared (NIR) luminescence of Er3+/Yb3+ co-doped phosphate glass are investigated. In the UC emission range, the 523 nm, 546 nm green emissions and the 659 nm red emission are observed. With the increasing pump power, the intensity ratios of I523/I659, I546/I659 and I523/I546 increase gradually. The phenomenon is reasonably interpreted by theoretical analysis based on steady state rate equations. The emission cross section of the infrared emission at 1546 nm is larger (about 6.7 × 10− 21 cm2), which is suitable for making fiber amplifier.  相似文献   

12.
The sample of Er3+/Yb3+ co-doped phosphate glass ceramic was prepared. At 975 nm laser diode (LD) excitation, the strong up-conversion (UC) emissions were observed, which were the UC green emission at 510–570 nm and the UC red emission at 636–692 nm, respectively. At low pump power (126 mW), the red emission is primary, and the color purity Rcp is 0.81. With the increasing of pump power, the emission color gradually varies from red to green. The intensity of the green emission is stronger compared to that of the red emission at high power (868 mW), and the color purity Rcp is 0.76. Thus, this material can be applied to fluorescence anti-counterfeiting by the color variety of UC emission under different pump power.  相似文献   

13.
The 1 mol% Er3+- and 0-20 mol% Yb3+-codoped Al2O3 powders have been prepared by the nonaqueous sol-gel process using aluminum isopropoxide as precursor, acetylacetone as chelating agent, nitric acid as catalyzer, and hydrated erbium and ytterbium nitrate as dopant under isopropanol environment. The two crystalline types of doped Al2O3, γ and θ, and a stoichiometric compound, (Yb,Er)3Al5O12, were obtained for all the Er3+-Yb3+-codoped Al2O3 powders at the sintering temperature of 1000 °C. The maximal intensity of both the green and red up-conversion emissions centered at about 523, 545, and 660 nm was observed for the 1 mol% Er3+- and 10 mol% Yb3+-codoped Al2O3 powders. The intensity ratio of the red to green up-conversion emission (Ired/Igreen) increased with increasing the Yb3+ doping concentration for the Er3+-Yb3+-codoped Al2O3 powders. Furthermore, the intensity ratio of the green up-conversion emission at about 523 to 545 nm (I523/I545) was proportional to the Yb3+ doping concentration and pump electric current, which was associated with the elevated temperature of powders.  相似文献   

14.
Upconversion (UC) spectra of Ho3+/Yb3+ codoped Y2O3, Gd2O3 bulk ceramics were obtained under the excitation of a 976 nm diode laser. Systematic experimental studies, including power dependence, luminescence lifetime, and the intensity ratio σ for the green to NIR emissions, were carried out in order to confirm the UC mechanism of Ho3+ ions. Our results demonstrated that the NIR emission was associated with the 5F4/5S25I7 transition of Ho3+ ions without the contribution of the 5I45I8 transition for Ho3+/Yb3+ codoped Y2O3 and Gd2O3 bulk ceramics. Additionally, population saturation in the 5I7 energy level had been observed in Ho3+/Yb3+ codoped Y2O3, Gd2O3 bulk ceramics. All experimental observations can be well explained by the steady-state rate equations.  相似文献   

15.
A K SINGH  K KUMAR  S B RAI 《Pramana》2014,82(2):409-412
In the present work, results of upconversion emission in various powder samples have been discussed. The powder upconversion phosphors such as La2O3:Er3+/Yb3+, LaF3:Er3+/Yb3+, CeO2:Er3+/Yb3+, CeF3:Er3+/Yb3+ were prepared and their upconversion emission, using 976 nm wavelength excitation, was investigated in depth. These phosphors have shown good upconversion emission in the visible region except for the CeF3:Er3+/Yb3+ phosphor. Two intense bands around 525 and 550 nm due to the 2 H 11/24 I 15/2 and 4 S 3/24 I 15/2 transitions, respectively, are found to be in a thermally coupled state in these samples. The intensity ratio of these two bands permitted us to estimate the temperature of the environment. The pump power studies of the emission bands of these samples are also made to understand the dynamics of the upconversion emission.  相似文献   

16.
In this work, the application of near infrared (NIR)-emitting NaYbF4:1%Tm3+@NaLuF4:30%Nd3+ core–shell nanoparticles is reported for noninvasive probing and monitoring the temperature during photopolymerization of dental materials. When excited at 808 nm, the synthesized nanoparticles emit NIR photoluminescence (PL) with two distinctive peaks at 865 and 980 nm which correspond to radiative transitions from the doped Nd3+ and Yb3+ ions, respectively. Luminescence intensity ratio between these two bands is found to vary with temperature due to temperature-dependent electronic excitation energy transfer between Nd3+ and Yb3+ ions at the core/shell interface. This finding allows luminescence ratiometric evaluation of the in situ temperature during photopolymerization of resin cement (doped with nanoparticles) in a veneer placement procedure. In addition, the NIR emission also enables PL imaging of the distribution of the adhesive under the veneer. The results highlight that rare-earth ions–doped nanoparticles with both excitation and emission in the NIR spectral range are advantageous for both PL-based nanothermometry and imaging due to the reduced attenuation of NIR light by dental ceramics.  相似文献   

17.
郭琳娜  王育华 《物理学报》2011,60(2):27803-027803
采用化学共沉淀法制备了系列Y1.98-2xYb2x Er0.02SiO5(0.00≤x≤0.15)以及Y1.736Yb0.24Er0.02Tm0.004SiO5上转换发光材料,比较了室温下Y1.98-2xYb2x Er0.02 SiO5 (x=0.00,0.08)样品在400—1600 nm范围内的吸收光谱,测量了所有样品在976 nm OPO激光器激发下的上转换发射光谱,以及Er3+离子4S3/2(4F9/2)→4I15/2,Tm3+离子1G43H6荧光衰减曲线和不同激发功率下的上转换蓝光发射强度,从而分析讨论了Er3+,Tm3+在Y2SiO5中的上转换发光机理.研究结果表明:在1250 ℃相对较低的温度下合成了X2型单斜晶系Y2SiO5 ∶Ln3+(Ln3+=Er3+,Yb3+,Tm3+),Yb3+的敏化显著增强了样品在976 nm附近的吸收能力,并大幅度加宽了该处的吸收带.分析上转换发射光谱发现:上转换绿光和红光强度都随着Yb3+浓度的增加先增强后减弱,但红光的猝灭浓度较高,归因于Er3+→Yb3+反向能量传递ETU4和Yb3+→Er3+正向能量传递ETU3过程的发生;上转换蓝光发射是三光子吸收过程,是通过Yb3+,Tm3+之间三次声子辅助的能量转移方式实现的. 关键词: 上转换 共沉淀 2SiO5∶Er3+')" href="#">Y2SiO5∶Er3+ 3+')" href="#">Yb3+ 3+')" href="#">Tm3+  相似文献   

18.
When Ho3+:Yb3+:CaF2 crystalline powders prepared by combustion synthesis were exposed to near-infrared (λ ~ 975 nm) radiation, intense photon up-conversion (UC) was observed at the visible with emission bands peaked at ~ 545, ~650 and ~750 nm identified as 4f-4f transitions from higher levels (5F4, 5S2) and 5F5 to lower levels 5I8 and 5I7 of Ho3+. The emission bands at the green and red, in particular, have been demonstrated to be useful for temperature sensing based on luminescence intensity ratio technique. However, no model is available in literature to explain the change of the electronic populations of states (5F4, 5S2) and 5F5 with temperature. The UC phenomenon was studied from both theoretical and experimental points of view. A rate equation model with temperature dependent parameters for Ho3+ and Yb3+ electronic populations considering a high sensitization of Ho3+ ions by Yb3+ ions was used. High Yb3+ → Ho3+ energy transfer efficiency was found (~88% at room temperature). The change with temperature predicted by the model for the luminescence intensity ratio of the UC green and red emission lines agrees well with the experimental data.  相似文献   

19.
Ultraviolet and visible upconversion emissions in Tb3+/Yb3+ co-doped YF3–BaF2–Ba(PO3)2 glasses were observed under 980-nm laser diode excitation. The dependence of the emission intensities of Tb3+ on the pump power reveals that two-photon processes account for blue cooperative emission of Yb3+ at 476 nm and green upconversion emission of Tb3+ at 543 nm, and three-photon processes for ultraviolet emission of Tb3+ in the wavelength range of 379–435 nm. The effects of Tb3+ concentration on the emission intensity and the lifetime of Tb3+ and Yb3+ are investigated in detail. It is found that the cooperative energy transfer from a pair of excited Yb3+ ions to a ground Tb3+ ion is responsible for the appearance of blue and green upconversion emissions due to the 5D47F J (J=6,5,4,3) transitions of Tb3+, and the resonance energy transfer from Yb3+ to Tb3+ accounts for the population on the 5D3,5G6 level and ultraviolet upconversion emission.  相似文献   

20.
In this paper we report on facile solution combustion synthesis of erbium doped β-Ga2O3 with urea as fuel. The product was characterized using powder X-ray diffraction and transmission electron microscopy (TEM). X-ray diffraction and TEM showed that the material is nanostructured. Luminescence properties of β-Ga2O3:Er are studied with excitation in near infrared (Nd:YAG laser at 1064 nm) and visible (argon laser at 514.5 nm). A strong NIR emission of Er3+ in the window of minimal optical loss in silica based optical fibers, due to the 4I13/24I15/2 transition at 1.55 μm has been observed. Codoping with Yb3+ significantly increases the intensity of that important emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号