首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In cancer gene therapy, restriction of antitumor transgene expression in a radiation field by use of ionizing radiation-inducible promoters is one of the promising approaches for tumor-specific gene delivery. Although tumor suppressor protein p53 is induced by low doses (< 1 Gy) of radiation, there have been only a few reports indicating potential utilization of a p53-target gene promoter, such as that of the p21 gene. This is mainly because the transiently transfected promoter of p53-target genes is not much sensitive to radiation. We examined the response of the p21 gene promoter to low-dose radiation when transduced into a human breast cancer cell line MCF-7 by use of recombinant adeno-associated virus (rAAV) vectors. It was shown that the p21 gene promoter transduced by rAAV vectors was more highly radiation-responsive than that transiently transfected by electroporation. A significant induction of the p21 gene promoter by radiation of low doses down to 0.2 Gy was observed. When cells were transduced with the p21 gene promoter-driven HSVtk gene by rAAV vector, they were significantly sensitized to repetitive treatment with low dose radiation (1 Gy) in the presence of the prodrug ganciclovir. It was therefore considered that the p21 gene promoter in combination with a rAAV vector is potentially usable for the development of a low-dose radiation-inducible vector for cancer gene therapy.  相似文献   

3.
The aims of this study were to evaluate the expression of enhanced green fluorescent protein (EGFP) driven by 6 different promoters, including cytomegalovirus IE enhancer and chicken beta-actin promoter (CAG), cytomegalovirus promoter (CMV), neuron-specific enolase promoter (NSE), myosin 7A promoter (Myo), elongation factor 1alpha promoter (EF-1alpha), and Rous sarcoma virus promoter (RSV), and assess the dose response of CAG promoter to transgene expression in the cochlea. Serotype 1 adeno-associated virus (AAV1) vectors with various constructs were transduced into the cochleae, and the level of EGFP expression was examined. We found the highest EGFP expression in the inner hair cells and other cochlear cells when CAG promoter was used. The CMV and NSE promoter drove the higher EGFP expression, but only a marginal activity was observed in EF-1alpha promoter driven constructs. RSV promoter failed to driven the EGFP expression. Myo promoter driven EGFP was exclusively expressed in the inner hair cells of the cochlea. When driven by CAG promoter, reporter gene expression was detected in inner hair cells at a dose as low as 3x10(7) genome copies, and continued to increase in a dose-dependent manner. Our data showed that individual promoter has different ability to drive reporter gene expression in the cochlear cells. Our results might provide important information with regard to the role of promoters in regulating transgene expression and for the proper design of vectors for gene expression and gene therapy.  相似文献   

4.
Cellular responses to photodynamic therapy (PDT) include induction of heat shock proteins (HSP). We examined meso-tetrahydroxyphenyl chlorin (mTHPC) PDT-mediated HSP activation in EMT6 cells stably transfected with a plasmid containing the gene for green fluorescent protein (GFP) driven by an hsp70 promoter. mTHPC incubation induced concentration-dependent GFP expression. Irradiation of cells exposed to a sensitizer concentration that induced a slight increase in GFP and no loss of cell viability resulted in fluence-dependent GFP accumulation. In response to drug only and to PDT, GFP levels increased to a maximum of four- to five-fold above control levels with increasing drug or fluence and then decreased at higher doses. A trypan blue-exclusion assay confirmed that decreased GFP levels in both cases were due to a loss of cell viability. For initial evaluation in vivo, HSP70/ GFP-transfected EMT6 tumors were grown in BALB/c mice and subjected to mTHPC-PDT with a fluence of 1 J/cm2. Six hours after PDT, GFP fluorescence was imaged in these tumors through the intact skin in vivo. These results indicate that sublethal doses of mTHPC-PDT stimulate GFP expression under the control of an hsp70 promoter and illustrate the potential of noninvasively monitoring reporter protein fluorescence as a measure of molecular response to PDT.  相似文献   

5.
Direct injection of the vascular endothelial growth factor (VEGF) gene plasmid DNA into the myocardium was shown to induce development of new blood vessels to increase the circulation in the heart of patients with coronary artery diseases. However, such angiogenic gene therapy (via naked DNA) was limited by low level of gene expression. Furthermore, the temporal and spatial characteristics of VEGF gene transfer in the heart are not known. In this study, we demonstrated that a plasmid vector, containing the human cytomegalovirus immediate early (HCMV IE) promoter and enhancer, induces greater expression of gene in the rat heart monitored by gene fused to the chloramphenicol acetyl transferase (CAT) reporter, than four different viral and cellular promoters. Interestingly, expression of VEGF121 protein showed an earlier peak, a shorter duration, and a wider distribution than that of CAT only. Therefore, a plasmid vector with an HCMV IE promoter/enhancer provides clear advantages over other previously developed plasmids. Furthermore, expression profile of VEGF121 gene may provide useful information in the design of angiogenic gene therapy in the heart.  相似文献   

6.
The mitogen-activated protein kinase (MAPK) phosphatase- 1 (MKP-1) belongs to the MAPK cascades which are central to cell proliferation and apoptosis. The carcinogenic role of MKP-1 has been reported in many types of cancer but it has rarely been investigated in breast cancer. The present study was designed to evaluate the MKP-1 mRNA expression and its possible regulation by methylation of MKP-1 promoter in the model of several breast cancer cell lines and tissues as well as controls. Our data demonstrate MKP-1 mRNA expression significantly decreased in five breast cancer cell lines compared to breast controls (P<0.01). Using the methylation-specific PCR (MSP) analysis, the unmethylated reaction (U) is dominant in both normal cell lines and benign breast tumors (100% vs. 86.2%), whereas the methylated reaction (M) is dominant in both breast cancer cell lines and invasive breast tumors (100% vs. 57.2%). In terms of methylation ratio (M/M+U), methylation level in MKP-1 promoter is significantly higher in the invasive breast tumor tissues (n = 152) than in benign breast tumor tissues (n = 29) (P<0.0001). Assessing the methylation ratio of the promoter of MKP-1 gene to diagnose the breast malignancy (invasive vs. benign), the area under the receiver- operating characteristic (ROC) curve was 0.809 (95% CI: 0.711-0.906, P<0.001). The best performance for this prediction has a sensitivity of 76.32% and a specificity of 82.76% at the cutoff value of 0.38. Taken together, we firstly demonstrated that the promoter methylation of MKP-1 gene is a potential breast cancer biomarker for breast malignancy.  相似文献   

7.
The combination of gene therapy and immunotherapy concepts, along recent advances in DNA nanotechnology, have the potential to provide important tools for cancer therapies. We present the development of stimuli-responsive microcapsules, loaded with a viral immunogenetic agent, harnessing the immune response against the Coronavirus Disease 2019, COVID-19, to selectively attack liver cancer cells (hepatoma) or recognize breast cancer or hepatoma, by expression of green fluorescence protein, GFP. The pH-responsive microcapsules, modified with DNA-tetrahedra nanostructures, increased hepatoma permeation by 50 %. Incorporation of a GFP-encoding lentivirus vector inside the tumor-targeting pH-stimulated miRNA-triggered and Alpha-fetoprotein-dictated microcapsules enables the demonstration of neoplasm selectivity, with approximately 5,000-, 8,000- and 50,000-fold more expression in the cancerous cells, respectively. The incorporation of the SARS-CoV-2 spike protein in the gene vector promotes specific recognition of the immune-evading hepatoma by the COVID-19-analogous immune response, which leads to cytotoxic and inflammatory activity, mediated by serum components taken from vaccinated or recovered COVID-19 patients, resulting in effective elimination of the hepatoma (>85 % yield).  相似文献   

8.
Retusone A (1), a new sesquiterpene dimer consisting of two guaiane-type sesquiterpenoids, and oleodaphnal (2) were isolated from heartwood of Wikstroemia retusa (Thymelaeaceae). The planar structure of 1 was elucidated on the basis of HRESIMS and NMR spectroscopic data, and the relative stereochemistry was established by X-ray diffraction analysis. The absolute configuration of 1 was determined by electronic circular dichroism. Compound 1 suppressed luciferase reporter gene expression driven by the HBO1 (histone acetyltransferase binding to ORC1) gene promoter in human breast cancer MCF7 cells. Compound 1 also decreased the expression of endogenous HBO1 mRNA and protein, and inhibited proliferation of the cells. These results suggest that retusone A (1), which has a unique dimeric sesquiterpenoid structure with inhibitory activity against HBO1 expression, may contribute to the development of a novel therapeutic candidate for the treatment of breast cancer.  相似文献   

9.
The importance of using tissue-specific promoters in the genetic transformation of plants has been emphasized increasingly. Here, we report the isolation of a novel seed-specific promoter region from peanut and its validation in Arabidopsis and tobacco seeds. The reported promoter region referred to as groundnut seed promoter (GSP) confers seed-specific expression in heterologous systems, which include putative promoter regions of the peanut (Arachis hypogaea L.) gene 8A4R19G1. This region was isolated, sequenced, and characterized using gel shift assays. Tobacco transgenics obtained using binary vectors carrying uidA reporter gene driven by GSP and/or cauliflower mosaic virus 35S promoters were confirmed through polymerase chain reaction (PCR), RT-PCR, and computational analysis of motifs which revealed the presence of TATA, CAAT boxes, and ATG signals. This seed-specific promoter region successfully targeted the reporter uidA gene to seed tissues in both Arabidopsis and tobacco model systems, where its expression was confirmed by histochemical analysis of the transgenic seeds. This promoter region is routinely being used in the genetic engineering studies in legumes aimed at targeting novel transgenes to the seeds, especially those involved in micronutrient enhancement, fungal resistance, and molecular pharming.  相似文献   

10.
11.
Human embryonic stem (hES) cells are capable of differentiating into pluralistic cell types, however, spontaneous differentiation generally gives rise to a limited number of specific differentiated cell types and a large degree of cell heterogeneity. In an effort to increase the efficiency of specified hES cell differentiation, we performed a series of transient transfection of hES cells with EGFP expression vectors driven by different promoter systems, including human cellular polypeptide chain elongation factor 1 alpha (hEF1alpha), human cytomegalo-virus, and chicken beta-actin. All these promoters were found to lead reporter gene expression in undifferentiated hES cells, but very few drug-selectable transfectants were obtained and failed to maintain stable expression of the transgene with either chemical or electroporation methods. In an attempt to increase transfection efficiency and obtain stable transgene expression, differentiated hES cells expressing both mesodermal and ectodermal markers were derived using a defined medium. Differentiated hES cells were electroporated with a hEF1alpha promoter-driven EGFP or human noggin expression vector. Using RT-PCR, immunocytochemistry and fluorescence microscopy, the differentiated hES cells transfected with foreign genes were confirmed to retain stable gene and protein expression during prolonged culture. These results may provide a new tool for introducing exogenous genes readily into hES cells, thereby facilitating more directed differentiation into specific and homogenous cell populations.  相似文献   

12.
13.
We report here, that a vector constructed based on ppET-1 gene promoter and 5' untranslated region induced a high level of gene expression in endothelial cells and the specificity is even further enhanced under hypoxia-mimic conditions due to a natural hypoxia responsive element within the promoter region. A naked DNA vector that confers endothelial cell specific gene expression as well as efficient levels of gene expression was constructed with an endothelial cell specific naked DNA vector, pETlong, by using the full length promoter of the preproendothelin-1 gene and the entire 5' untranslated region upstream from the start codon. Inclusion of the entire 5' untranslated region in pETlong increased gene expression 2.96 fold as compared with that from pETshort, which contains only the promoter sequences. Reporter gene expression from pETlong was 7.9 fold higher as compared with that from CMV-driven promoter based vector in calf pulmonary endothelial cells. However, in nonendothelial COS cells, luciferase activity from pETlong was only 0.3 fold as compared with that of CMV-based vector. Similar results were observed in other nonendothelial cells. These results demonstrate that the pETlong drives gene expression in endothelial cells with high efficacy and specificity. We have examined hypoxia responsiveness of pETlong as the promoter region of the preproendothelin-1 gene contains hypoxia responsive elements. The activity of the pETlong vector was increased 1.6 fold under hypoxia-mimic conditions using cobalt chloride. The high levels of hypoxia-inducible expression in endothelial cells relative to the low levels of background expression in other cells shows that pETlong could be a useful tool for vascular targeting of vascular disease and cancer gene therapy.  相似文献   

14.
Visualizing Gene Expression in Living Mammals Using a Bioluminescent Reporter   总被引:24,自引:0,他引:24  
Abstract— Control of gene expression often involves an interwoven set of regulatory processes. As information regarding regulatory pathways may be lost in ex vivo analyses, we used bioluminescence to monitor gene expression in living mammals. Viral promoters fused to firefly luciferase as transgenes in mice allowed external monitoring of gene expression both superficially and in deep tissues. In vivo bioluminescence was detectable using either intensified or cooled charge-coupled device cameras, and could be detected following both topical and systemic delivery of substrate. In vivo control of the promoter from the human immunodeficiency virus was demonstrated. As a model for DNA-based therapies and vaccines, in vivo transfection of a luciferase expression vector (SV-40 promoter and enhancer controlling expression) was detected. We conclude that gene regulation, DNA delivery and expression can now be noninvasively monitored in living mammals using a luciferase reporter. Thus, real-time, noninvasive study of gene expression in living animal models for human development and disease is possible.  相似文献   

15.
16.
Epstein-Barr virus (EBV) microRNAs (miRNAs) are expressed in EBV-associated tumors and cell lines, but the regulation mechanism of their expression is unclear yet. We investigated whether the expression of EBV miRNAs is epigenetically regulated in EBV-infected B cell lines. The expression of BART miRNAs was inversely related with the methylation level of the BART promoter at both steady-state and following 5-aza-2'-deoxycytidine treatment of the cells. The expression of BHRF1 miRNAs also became detectable with the demethylation of Cp/Wp in latency I EBV-infected cell lines. Furthermore, in vitro methylation of the BART and Cp promoters reduced the promoter-driven transactivation. In contrast, tricostatin A had little effect on the expression of EBV miRNA expression as well as on the BART and Cp/Wp promoters. Our results suggest that promoter methylation, but not histone acetylation, plays a role in regulation of the EBV miRNA expression in EBV-infected B cell lines.  相似文献   

17.
Human interferon alpha 2b (IFNα-2b) is a pleiotropic cytokine used to treat various viral diseases and cancers. Conventionally, recombinant human IFNα-2b used in clinics was produced by prokaryotic expression system, which always lack of enough biological activity due to limitations on proper folding and post-translational modifications, so the eukaryotic expression system are becoming prevailing method for the production of recombinant proteins. In this study, human breast cancer cell Bcap-37 was firstly used as host for the expression of human IFNα-2b, with the expression vector pIRES2-IFN-EGFP, in which IFNα-2b gene is under the control of CMV promoter. The expression of recombinant IFNα-2b was detected by Western blot and ELISA. Results showed that the concentration of the secreted recombinant IFNα-2b in culture medium was 435.7 pg/mL/24 h. Biological activity of the recombinant IFNα-2b was assayed by detecting the expression of IFN-inducible genes, including MxA, OAS, PKR, and Caspase1 through QRT-PCR. Results demonstrated that recombinant IFNα-2b possess the biological activities. Compared to non-transgenic cells, the expression levels of the aforementioned four IFN-inducible genes were increased by 18.098-, 1.843-, 2.21-, and 3.066-folds, respectively. We got to a conclusion that the human breast cancer cell Bcap-37 could express bioactive recombinant IFNα-2b.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号