首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
电弧等离子体是通过电极之间击穿放电,产生热电弧,实现对冷态介质加热,目前大功率的电弧等离子体发生器在航空航天领域有重要的应用,是国内外开展飞行器防热材料筛选和考核研究最重要的地面模拟试验设备.本研究基于发展的高焓气流非接触式光谱诊断方法,开展对10 MW量级大功率长分段电弧加热器起弧过程流场特性的定量、定性研究,在线测...  相似文献   

2.
Results of a study of the pseudobinary system PbTe-GeTe are reported and discussed. A new phase diagram, the dependence of the lattice constants on alloy composition, and measurements of a phase transformation in Pb1−xGexTe are presented. Complete solid solubility is found above 570°C. An exsolution dome extends from a maximum at 570°C (near 60 mole % GeTe) to about 5 and 96 mole % GeTe at 300°C. For alloys with compositions near GeTe the unit cell parameters depend markedly on the concentration of cation vacancies. The temperature for the cubic to trigonal phase transformation depends on alloy composition, decreasing from about 670°K for x = 1 to 0°K for x ≈ 0·01. The variation of lattice parameters at the transition temperature is continuous within experimental precision.  相似文献   

3.
In this study, a direct numerical simulation based on compressible flow dynamics has been applied to the autoignition and extinction of a high-pressure hydrogen jet spouting from a tube. The diameter of the tube is 4.8 mm. The length of the tube is 71 mm. At the inlet, pressure is set at 3.6, 5.3 and 21.1 MPa, and temperature is set at 300 K for all cases. To explore the autoignition of hydrogen jet, two-dimensional axisymmetric Navier–Stokes equations with a detailed chemical kinetics and rigorous transport properties have been employed. The hydrogen jet through the tube is choked. The numerical results show that the high-pressure hydrogen jet produces a semi-spherical shock wave in the ambient air at the early time of jetting. The shock wave heats up the air to a high temperature and causes the autoignition of the hydrogen and air mixture in the tube as well as at the tube exit.  相似文献   

4.
Electron-diffraction and electron-microscope methods were used to investigate the structure of Cu2Se films of close to stoichiometric composition. It is shown that in polycrystalline and single-crystal films of thickness >400Å at room temperature, the tetragonal modification is stable, which at temperatures above 400°K is transformed into the cubical modification. In thinner films d<400 Å the cubical modification of copper selenide is stable at room temperature. A sharp peak is observed at 400°K on the temperature dependence of the resistance; this is connected with the phase transition. At room temperature, copper selenide is a degenerate p-type semiconductor with carrier concentration 5 · 1022–8 · 1020 cm–3, depending on the thickness of the film.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 90–94, August, 1973.  相似文献   

5.
大气压等离子体针空气放电产生的低温等离子体由于脱离了真空装置,在工业上具有广泛的应用前景。本文采用等离子体针装置在空气中产生了稳定的大气压等离子体羽,并利用光谱法对等离子体羽的振动温度和气体温度进行了研究。结果发现大气压空气等离子体羽的放电区域分为强光区和弱光区。放电发光信号是宽度为几个微秒的脉冲。研究结果表明等离子体振动温度随空间位置不同在2 500~3 000K范围变化。振动温度在强光区随着远离针尖距离的增大振动温度呈上升趋势,在5mm左右存在极大值,在弱光区随着远离针尖距离的增大振动温度呈下降趋势。与其相似,弱光区放电的气体温度随着远离针尖距离增大,从640K降低到540K。这些结果对大气压空气放电的工业应用具有重要意义。  相似文献   

6.
Measured values of air emittance at 35 000°K at low pressures are given. It is shown that the plasmas were in thermodynamic equilibrium. The results obtained are compared with theory.  相似文献   

7.
Catalytic ignition and heat release of methane oxidation over a Pd wire covered with a 1–2 μm PdO surface layer were investigated by wire microcalorimetry over the temperature range of 600–770 K and pressure range of 0.5–4 atm. Ignition temperatures and heat release rates for different methane concentrations (1–4 vol.% in dry air) were determined, showing that the ignition temperatures decrease with increasing the methane concentration and increasing ambient pressure. At total pressure of 1 atm and 2% methane concentration, the global activation energy for the catalytic reaction is 21.5 ± 0.9 kcal/mol and 14.3 ± 0.2 kcal/mol in the temperature ranges of 600–670 K and 670–770 K, respectively. The reaction order for methane is 0.9 ± 0.1 over the temperature range of 630–770 K.  相似文献   

8.
X-ray photoelectron spectroscopy (XPS) has been used to investigate the changes in surface composition of three steels as they have undergone heating. The steels were mild steel, and two austenitic stainless steels, commonly designated 304 and 316 stainless steels. XPS measurements were made on the untreated samples, and then following heating for 30 min in vacuo and in a 1 × 10−6 Torr partial pressure of air, at temperatures between 100 °C and 600 °C.Mild steel behaves differently to the two stainless steels under the heating conditions. In mild steel the iron content of the surface increased, with oxygen and carbon decreasing, as a function of increasing temperature. The chemical state of the iron also changed from oxide at low temperatures, to metallic at temperatures above 450 °C.In both stainless steels the amount of iron present in the surface decreased with increasing temperature. The decrease in iron at the surface was accompanied by an increase in the amount of chromium at the steel surface. At temperatures above 450 °C the iron in both 304 and 316 stainless steels showed significant contributions from metallic iron, whilst the chromium present was in an oxide state. In 316 stainless steel heated to 600 °C there was some metallic chromium present in the surface layer.The surfaces heated in air showed the least variation in composition, with the major change being the loss of carbon from the surfaces following heating above 300 °C. There was also a minor increase in the concentration of chromium present on both the stainless steels heated under these conditions. There was also little change in the oxidation state of the iron and chromium present on the surface of these steels. There was some evidence of the thickening of the surface oxides as seen by the loss of the lower binding energy signal in the iron or chromium core level scans.The surfaces heated in vacuum showed a similar trend in the concentration of carbon on the surfaces, however the overall concentration of oxygen decreased throughout the heating of these steels. There were also significant changes in the oxidation state of the iron and chromium on these surfaces with significant amounts or iron and chromium present in the metallic form following heating up to 600 °C.It appears that the carbon contamination on the surfaces plays an important role in the fate of the surface oxide layer for all of the steels heated in a vacuum environment.  相似文献   

9.
针对自主设计的等离子体发生器,通过实验分析了常压下等离子热射流形态的发展状况,并对常压下的空气放电特性进行了数值模拟,以等离子发生器为原型,将等离子电弧的电场、磁场、温度场以及速度场进行了直接耦合计算,得到了等离子体电弧的速度场和温度场的分布情况. 针对不同间隙对放电结果的影响进行了分析,结果表明,放电间隙由1.5 mm增大到3.5 mm时,热射流速度由41.5 m/s增大到62.4 m/s,温度由3 650 K降低到1 960 K. 当间隙过窄时,温度过高将会烧蚀电极,影响电极使用寿命.   相似文献   

10.
We report on new measurements of the electrical conductivity, Hall effect and thermoelectric power in the temperature range from 2 K to 440 K for AlCuFe quasicrystals of different compositions and annealing treatments. Particularly, the Hall coefficient and the thermopower show a strong dependence on composition and also on heat treatment. The increase of sample perfection on annealing between 810° C and 825° C is demonstrated by analysing X-ray measurements.All measured quantities can be explained in terms of a semimetal containing both electrons and holes at low temperatures, at least for samples near the ideal quasicrystalline structure and composition.  相似文献   

11.
In this work, a study of annealing process effect on TiN/TiC bilayer is presented. The annealing temperature was varied between room temperature and 500 °C. Materials were produced by the plasma-assisted pulsed vacuum arc discharge technique. In order to grow the films, a target of Ti with 99.9999% purity and stainless-steel 304 substrate were used. For the production of TiN layer, the reaction chamber was filled up with nitrogen gas until reaching 25 Pa and the discharge was performed at 310 V. The TiC layer was grown in a methane atmosphere at 30 Pa and 270 V. X-ray diffraction and X photoelectron spectroscopy were employed for studying the structure and chemical composition evolution during the annealing process. At 400 °C, TiO2 phase begun to appear and it was well observed at 500 °C. Crystallite size and microstrain was obtained as a function of the annealing temperature. XPS technique was employed for analyzing the bilayers before and after the annealing process. Narrow spectra of Ti2p, N1s and O1s were obtained, presenting TiO phases.  相似文献   

12.
The behavior of low energy electron-stimulated O+ ions desorbing from oxygen adsorbed on polycrystalline rhenium samples has been found to be significantly different from those observed desorbing from other oxygen ad layers. Oxygen initially adsorbed at 300°K has an ionic desorption cross section below the level of detectability, (< 10−9 ions/electron) in these experiments, a result in accordance with that previously observed on other metals. On continued oxygen exposure, the O+ signal first increases to a maximum value and then decays to a lower level; the rate of both these processes is directly proportional to the oxygen pressure in the gas phase. If the temperature of the ad layer is raised above 300°K, the adsorbed species with high ionic desorption cross section are removed at about 500°K. At higher temperatures, O+ ions which can be related to the oxygen initially adsorbed are detected. The possible reasons for the observed O+ desorption characteristics for oxygen on rhenium are discussed.  相似文献   

13.
An experimental and theoretical study on ablation controlled arcs in cylindrical tubes is presented. Measuring techniques for stagnation pressure, electric field strength, mass ablation rate, and arc cross section are described with which a comprehensive set of experimental data is obtained for blackened PTFE as a reference material. These data are interpreted with an isothermal two-zone model that consistently accounts for the balance of mass and axial momentum and yields simple scaling laws for the arc characteristics. Consistent agreement with the experimental data is found for an arc temperature TA = 19 000 ± 2000 K, a vapor layer temperature Tv = 3400 ± 200 K, and a transparently radiated fraction of the arc power of v = 0.32 ± 0.03. The vapor temperature can be explained with a photoablation mechanism. The ablation arc model allows quantifying of the phenomena related to nozzle clogging in gas-blast circuit breakers, namely flow blocking and reverse flow heating. How these phenomena determine the pressure rise in self-blast circuit breakers is shown.  相似文献   

14.
Laser-Induced Fluorescence (LIF) from the S1 state of acetone and 3-pentanone was studied as a function of temperature and pressure using excitation at 248 nm. Additionally, LIF of 3-pentanone was investigated using 277 and 312 nm excitation. Added gases were synthetic air, O2, and N2 respectively, in the range 0–50 bar. At 383 K and for excitation at 248 nm, all the chosen collision partners gave an initial enhancement in fluorescence intensity with added gas pressure. Thereafter, the signal intensity remained constant for N2 but decreased markedly for O2. For synthetic air, only a small decrease occurred beyond 25 bar. At longer excitation wavelengths (277 and 312 nm), the corresponding initial rise in signal with synthetic air pressure was less than that for 248 nm. The temperature dependence of the fluorescence intensity was determined in the range 383–640 K at a constant pressure of 1 bar synthetic air. For 248 nm excitation, a marked fall in the fluorescence signal was observed, whereas for 277 nm excitation the corresponding decrease was only half as strong. By contrast, exciting 3-pentanone at 312 nm, the signal intensity increased markedly in the same temperature range. These results are consistent with the observation of a red shift of the absorption spectra (9 nm) over this temperature range. Essentially, the same temperature dependence was obtained at 10 and 20 bar pressure of synthetic air. It is demonstrated that temperatures can be determined from the relative fluorescence intensities following excitation of 3-pentanone at 248 and 312 nm, respectively. This new approach could be of interest as a non-intrusive thermometry method, e.g., for the compression phase in combustion engines.  相似文献   

15.
ZnO thin films were deposited by thermal evaporation of a ZnO powder. The as-deposited films are dark brown, rich zinc and present a low transmittance. Then, these films were annealed in air atmosphere at different temperatures between 100 and 400 °C. Their microstructure and composition were studied using XRD and RBS measurements respectively. By increasing the temperature, it was found that film oxidation starts at 250 °C. XRD peaks related to ZnO appear and peaks related to Zn decrease. At 300 °C, zinc was totally oxidised and the films became totally transparent. The electrical conductivity measurement that were carried out in function of the annealing temperature showed the transition from highly conductive Zn thin film to a lower conductive ZnO thin film. The optical gap (Eg) was deduced from the UV-vis transmittance, and its variation was linked to the formation of ZnO.  相似文献   

16.
In the present work, the characteristics of direct-current (DC) discharge in a wire-cylinder configuration at an ambient temperature range of 350–850 °C were studied by analyzing photographs of the discharging process and the corresponding VI characteristics, with the aim of facilitating the application of plasma technology in the fields of energy and the environment. The influences of the ambient temperature, the inter-electrode gap, the gas medium and the cathode material on the DC discharge were investigated. The corona-onset threshold voltage (COTV) and the spark-breakdown threshold voltage (SBTV) decrease as the ambient temperature increases, and the SBTV decreases more rapidly. Increasing the inter-electrode gap enlarges the difference between the SBTV and the COTV. After spark breakdown, in an air atmosphere, glow discharge is more likely to take place under conditions of high ambient temperatures or small inter-electrode gaps. The values of the SBTV in different atmospheres have the following relation: air ≈ O2 > CO2. At an ambient temperature range of 350–850 °C and in an atmosphere of N2, glow discharge and arc discharge occur successively as the output voltage of the power supply is increased, while in an atmosphere of O2 and CO2, only corona and arc discharge are successively observed. In an air atmosphere, when the inter-electrode gap is 29 mm, corona, glow and arc discharge occur successively with increasing output voltage when the ambient temperature is 850 °C, while only corona and arc discharge appear when the temperature is 350–750 °C. When the inter-electrode gap is 5 mm in an air atmosphere, corona, glow and arc discharge occur successively in an ambient temperature range of 350–850 °C. The cathode material has a minor influence on the COTV and a more significant influence on the SBTV. In a device using a cathode with a low work function, the SBTV is low, and the power to maintain arc discharge is small.  相似文献   

17.
计算了常压下3 000~25 000 K范围内熔化极气体保护焊(GMAW)保护气体Ar,CO2,82%Ar-18%CO2及其与Fe蒸汽的混合物的平衡成分。上述气体被看作一种Ar-CO2-Fe等离子体,等离子体中的39种粒子被分为5种主元粒子和34种非主元粒子。根据化学方程,非主元粒子由主元粒子表示以减少未知数的个数和求解量,再利用牛顿迭代法对平衡方程进行求解,最终实现了成分求解。计算结果表明,Ar气随着温度升高依次发生一次电离和二次电离,CO2气体除了在高温时发生原子电离外,在低温时(T<8 000 K)还存在CO2,O2,CO等分子的解离,82%Ar-18%CO2混合气则既有解离又有电离。Fe的加入会增加等离子体的电子密度,特别是在15 000 K以下。等离子体成分的确定为GMAW电弧等离子体辐射属性计算以及电弧中Fe蒸汽浓度的光谱测定奠定了基础。  相似文献   

18.
The electrical and thermal conductivities of air contaminated with electrode metal vapour from copper electrodes has been measured up to 8200 °K at atmospheric pressure using a modified form of Maecker's wall stabilized arc with a stabilizing hole 5 mm in diameter. The results of the study are compared with those of an uncontaminated arc in air. Both the conductivities are much greater than those for uncontaminated arc in air. This is believed to be due to the increased electron density by virtue of the lower ionization potential of copper. Energy transport by radiation is neglected in this study.  相似文献   

19.
对药芯焊丝脉冲TIG电弧增材制造电弧特性展开研究。利用高速摄像拍摄不同熔敷层脉冲电流条件下的电弧与熔滴过渡图片,对高速摄像图片进行分析,发现焊丝熔化过程存在“滞熔”现象,导致熔滴过渡存在渣桥过渡与液桥过渡两种接触过渡方式,在脉冲峰值电流较小的50/100 A电流参数下,出现熔滴断续的渣桥过渡的频率最高。熔滴过渡影响电弧温度场与药粉成分在电弧中的分布,利用光谱诊断分析熔敷过程中在不同脉冲峰值电流与脉冲基值电流条件下电弧温度场及药粉成分在电弧中的分布。利用点阵法测量得到各点光谱数据,根据Boltzmann图法计算各点温度,将各点温度拟合得到完整电弧温度场,结果表明,焊丝从钨极轴线前(左)侧送入,吸收电弧热量并且对电弧有扰动作用,电弧前侧温度低于电弧后(右)侧,电弧前侧尺寸稍小于后侧;随着熔敷层数增加,降低峰值电流,电弧收缩,高温区面积相对减小,低温区面积相对增大。电弧最高温度区域出现在钨极下方1~2 mm的范围,大约为13 000~15 000 K,脉冲峰值电流越大则最高温度区域面积越大。在脉冲基值电流时期,由于电流小,电弧面积相比于峰值时期要小得多,焊丝与电弧相互作用减弱,电弧温度场基本关于钨极轴线对称分布。选择药芯焊丝中特有的Na元素的NaⅠ589.6 nm谱线对其分布点进行标记,拟合绘出不同脉冲峰值电流与基值电流下药粉元素在电弧中的分布情况,结果表明,电流越小,药粉运动高度越低,在不同的脉冲峰值电流下药粉均没有沾染到钨极上,在不同的脉冲峰值电流与脉冲基值电流下 Na元素均偏电弧后侧分布,说明焊丝自电弧前侧送入熔池后,在电弧前侧的电弧中没有出现药粉强烈的喷发现象,而是进入熔池进行冶金反应。接触过渡解决了碱性焊丝工艺性差的问题,电弧较为稳定,避免药粉喷发损伤钨极,熔敷过程稳定进行。  相似文献   

20.
Surface sparks on TiO2 ceramic in Ar and Xe have been used; the intensity is greater than that of an open discharge by an order of magnitude. Under limiting conditions the discharge radiates as a blackbody at 63 000° K in Ar and at 40 000° K in Xe. Spectra and high-speed photographs of the discharge channel are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号