首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four low-temperature phases with compositions Bi10Mo3O24, Bi6Mo2O15, Bi14Mo5O36 and Bi8Mo3O21 have been prepared by the n-butylamine wet synthesis method. They have been characterized by powder X-ray diffraction and transmission electron microscopy, mainly by selected area electron diffraction. The four phases present a close structural relationship and a common basic fluorite-type structure and are members of a homologous series of phases with general formula Bi2n+4MonO6(n+1), being n=3, 4, 5 and 6, respectively. The matrices relating their superstructures and the basic fluorite type unit cell are given, as well as a general one for the whole series. The conductor behavior of these phases is characterized by impedance spectroscopy being all these materials very good ionic conductors.  相似文献   

2.
Recently, the ferroelectromagnet YMnO3 has been the focus of interest because it exhibits both antiferromagnetism (Néel temperature 80 K) and ferroelectricity (Curie temperature 914 K). There have been no reports of complete YMn1−xMxO3 solid solutions in which substitution of the foreign M cation preserves the hexagonal P63cm structure. In contrast there exist several homeotypic phases with the general formula, Ln1+nCunMO3+3n (n=1 (M=Ti), 2 (M=V) and 3 (M=Mo); Ln: lanthanide). Several YMn1−x(Cu3/4Mo1/4)xO3 compounds have been synthesized. The solid solution, from YMnO3 (x=0) to YCu3/4Mo1/4O3 (x=1) has been characterized by X-ray diffraction and transmission electron microscopy study. For 0<x<0.9, the compounds are found to crystallize in the non-centrosymmetric structure, space group P63cm, of YMnO3. The Mn-free end member, x=1, crystallizes in a complex multiple cell, the superstructure being associated to Cu3+/Mo6+ cationic ordering. Dilution of the Mn3+ magnetic array by the paramagnetic (Cu2+) and diamagnetic (Mo6+) cations is found to decrease the antiferromagnetic ordering temperature and it becomes undetectable for x0.5 compositions.  相似文献   

3.
The crystal and magnetic structures of Sr4MMn2O9 (M=Cu, Zn) have been refined from neutron powder diffraction data. These trigonal compounds (space group P321, a=9.5918(1), c=7.8114(1) Å (Cu); a=9.5894(1), c=7.5039(1) Å (Zn)) are n=3 members of the series A3n+3MnBn+3O6n+9, with each unit cell containing three offset [001] polyhedral chains, each of which ideally contains a 1:1 ratio of B2O9 units and MO6 trigonal prisms. In fact anti-site disorder between Mn and M is observed, and for M=Cu the cations are disordered off the center of the prism towards a rectangular face. Both compositions show 3D anti-ferromagnetic order at 1.6 K, with an ordered magnetic moment of 1.91(6) (M=Cu) or 1.8(1) (M=Zn) μB per Mn. No ordered magnetic moment was detected on the trigonal prismatic site in either compound, consistent with the observed temperature dependence of the magnetic susceptibility.  相似文献   

4.
A new structural family, (A2M6O13)n·AM4O9, was isolated and studied by means of X-ray diffraction, electron diffraction, and electron microscopy. The structure consists of an ordered intergrowth of two types of structural units: A2Ti6O13 and hypothetical AM4O9, both characterized by zigzag ribbons of, respectively, 2 × 3 and 2 × 2 edge-sharing octahedra, joined by corner sharing to form a series of open tunnels containing A and A′ cations. The monoclinic unit-cell parameters can be deduced, for an “n” term, from those of A2Ti6O13.  相似文献   

5.
The structure of La6Mo8O33 has been determined from a triple pattern powder diffraction analysis. Two high-resolution neutron diffraction patterns collected at 1.594 and 2.398 Å and one X-rays were used. This molybdate crystallizes in a non-centrosymmetric monoclinic space group P21(N°4), Z=2,a=10.7411(3) Å, b=11.9678(3) Å, c=11.7722(3) Å, β=116.062 (1)°. La6Mo8O33 is an unusual ordered defect Scheelite. Hence, it should be described with cation vacancies and an extra oxygen atom following the formula: La62Mo8O32+1. This extra oxygen atom leads to a pyramidal environment, whereas the other molybdenum atoms present tetrahedral environment. A molybdenum tetrahedral is connecting to the pyramid, forming an [Mo2O9] unit.  相似文献   

6.
Lattice images of 4H, 5H, and 6H perovskite polytypes have been obtained. With the electron beam parallel to 10 , the images are correlated directly with the projected structures of the polytypes. Stacking faults were found only in the 6H compound, and consisted of additional cubic close-packed AO3 layers. Ordering of cation vacancies in the 5H material was evident in the lattice image as an array of white dots.  相似文献   

7.
The distribution of d electrons over the cations in MoFe2O4, which is represented by the formal valence assignment, is shown to be complicated by the equilibrium reactionsFe2+B+Fe3+A+Mo3+Fe3+B+Fe2+A+Mo4+We have used thermal treatment to confirm that the Mo are primarily on octahedral sites; FeA[MoBFeB]O4. K-shell absorption and Mössbauer data at T = 423 K > Tc demonstrate that the iron has an average valence near 2.5+ with fast electron transfer (τh < 10−8 sec) on both octahedral and tetrahedral sites. Paramagnetic susceptibility data give a Curie constant CM = 7.95 ± 0.2 emu/mole and a Weiss constant θp = −445 K; magnetometer measurements confirm a compensation point near 160 K. Transport data give a surprisingly high electronic conductivity, but also give an activated mobility similar to that found in AlFe2O4 and CrFe2O4 where mixed Fe3+/2+ valences on both A and B sites have been demonstrated. However, a positive Seebeck coefficient and a preexponential factor one order of magnitude higher in MoFe2O4 point to involvement of a fraction of the Mo atoms in electronic transport, which would be consistent with the observation of a τh < 10−8 sec on the A sites of a spinel. An energy diagram consistent with these data and other information about the relative redox potentials of these ions in oxides are proposed for this system.  相似文献   

8.
A mixed-valent molybdenotungstophosphate, Nax(Mo, W)2O3(PO4)2 (x 0.75) has been isolated for the first time. It crystallizes in the space group P 21/m with a = 7.200(1) Å, b = 6.369(1) Å, c = 9.123(1) Å, and β = 106.29(1)°. Its structure consists of M2PO13 units built up of two M O6 octahedra (M = Mo, W) and one PO4 tetrahedron sharing their apices as already observed in several molybdenum phosphates. These units share their apices with PO4 tetrahedra forming [M2P2O15] chains running along . The host lattice [(Mo, W)2P2O11] can be described by the assemblage of such chains or by the assemblage of [MPO8] chains running along , in which one PO4 tetrahedron alternates with one MO6 octahedron. The tridimensional framework [Mo, WP2O11] delimits tunnels running along , occupied by sodium with two kinds of coordination, 6 and 5. The distribution of the different species, in the octahedral sites according to the formulation Na0.75(MoVI0.42WVI0.58)M1 (MoV0.75WVI0.25)2O3(PO4)2, is discussed.  相似文献   

9.
Polymorphous modifications (γ-, β- and α-) of the double potassium ytterbium molybdenum oxide K5Yb(MoO4)4 were synthesized by the solid-state method and their structures were studied by X-ray powder diffraction, electron diffraction and high-resolution electron microscopy. DSC analysis shows that the γ→β↔α phase transitions are not accompanied with a significant reconstruction of the palmierite-type structure. All modifications of K5Yb(MoO4)4 are related to the mineral palmierite—K2Pb(SO4)2. The palmierite-type structure is made up of isolated AO4 tetrahedra, which connect the MOn polyhedra into a 3-D framework via common vertices. Cations occupy two crystallographic positions M1 and M2. The γ-phase crystallizes in a monoclinic system (space group C2/c) with unit-cell parameters: a=14.8236(1) Å, b=12.1293(1) Å, c=10.5151(1) Å, β=114.559(1)°, Z=4. The α-phase has space group with unit-cell parameters: a=6.0372(1) Å, c=20.4045(2) Å. The structures of the γ- and α-modification were refined by the Rietveld method (Rwp=6.25%, RI=2.16% and Rwp=9.09%, RI=5.80% for γ- and α-, respectively). In K5Yb(MoO4)4 ytterbium cations occupy M1 while K+ cations occupy M2 and M1 positions of the palmierite-type structure. In the high-temperature (α-) modification the Yb3+ and K+ occupy the M1 site in a statistical manner (M1=0.5Yb3++0.5K+) while in the low-temperature (γ-) modification these cations occupy this site in an ordered way. The intermediate β-phase shows an incommensurate modulated structure.  相似文献   

10.
We succeeded to prepare novel [Mo36O112(H2O)16]8− ({Mo36}) compounds by using 1,3-diamino-2-propanol (βOHC3-DA) and 1,3,5-tris(aminomethyl)benzene (MES-TA)+1,3-diaminopropane (C3-DA) as linkers, and determined their crystal structures. We have confirmed they have unique two-dimensional (2-D) molybdenum oxide frameworks, which are formed by condensation of {Mo36}s. Side-staggered arrays of {Mo36}s, connected in lying position by eight bridges per a {Mo36}, are formed in the compound with βOHC3-DA, while herringbone arrays of {Mo36}s, connected in standing position by four bridges per a {Mo36}, are built in the compound with MES-TA+C3-DA. The latter compound exhibited non-stoichiometric property, and its composition and cell parameters varied depending on the relative concentration of MES-TA in the mother solution.  相似文献   

11.
采用程序升温反应法制备了钝化态、还原钝化态和新鲜态Mo2C/γ-Al2O3催化剂,结合原位红外光谱表征技术和反应性能评价,考察、比较了三种催化剂苯加氢反应活性.原位红外光谱结果表明,新鲜态Mo2C/γ-Al2O3催化剂在室温就显示了较好的苯加氢反应活性,表现了类贵金属的催化活性.CO吸附在反应前后新鲜态Mo2C/γ-Al2O3催化剂上的对比结果表明,低价态的Mo位(Moδ+(0δ2))是苯加氢反应活性中心.三种催化剂的反应活性结果表明,新鲜态Mo2C/γ-Al2O3催化剂反应活性最好,催化剂寿命最长,失活之后在500°C下H2处理即可恢复原有活性.  相似文献   

12.
The title compound has been prepared as polycrystalline powder by thermal treatments of mixtures of Pr6O11 and MoO2 in air. In the literature, an oxide with a composition Pr2MoO6 has been formerly described to present interesting catalytic properties, but its true stoichiometry and crystal structure are reported here for the first time. It is cubic, isostructural with CdTm4Mo3O16 (space group Pn-3n, Z=8), with a=11.0897(1) Å. The structure contains MoO4 tetrahedral units, with Mo-O distances of 1.788(2) Å, fully long-range ordered with PrO8 polyhedra; in fact it can be considered as a superstructure of fluorite (M8O16), containing 32 MO2 fluorite formulae per unit cell, with a lattice parameter related to that of cubic fluorite (af=5.5 Å) as a≈2af. A bond valence study indicates that Mo exhibits a mixed oxidation state between 5+ and 6+ (perhaps accounting for the excellent catalytic properties). One kind of Pr atoms is trivalent whereas the second presents a mixed Pr3+-Pr4+ oxidation state. The similarity of the XRD pattern with that published for Ce2MoO6 suggests that this compound also belongs to the same structural type, with an actual stoichiometry Ce5Mo3O16.  相似文献   

13.
A novel organic/inorganic compound [Hbenzimi]4[(benzimi)2Mo8O26] · 2H2O (1) has been prepared hydrothermally and characterized by elemental analyses, i.r., x.p.s., t.g. and single crystal X-ray diffraction. The single crystal X-ray diffraction analysis reveals that compound (1) consists of the [Mo8O26]4− cluster as the structural motif covalently linked by benzimidazole molecules and protonated benzimidazole molecules as charge compensation cations. It is interesting that the benzimidazole molecules were synthesized from 1,2-phenylenediamine and oxalic acid. The [Mo8O26]4− polyoxoanions and organic ligands in compound (1) interact with each other via extensive hydrogen bonds to form a three-dimensional supramolecular framework.  相似文献   

14.
The crystal structure of our newly discovered Sr-Co-O phase is investigated in detail through high-resolution electron microscopy (HREM) techniques. Electron diffraction (ED) measurement together with energy dispersive X-ray spectroscopy (EDS) analysis show that an ampoule-synthesized sample contains an unknown Sr-Co-O ternary phase with monoclinic symmetry and the cation ratio of Sr/Co=1. From HREM images a layered structure with a regular stacking of a CdI2-type CoO2 sheet and a rock-salt-type Sr2O2 double-layered block is observed, which confirms that the phase is the parent of the more complex “misfit-layered (ML)” cobalt oxides of [MmA2Om+2]qCoO2 with the formula of [Sr2O2]qCoO2, i.e. m=0. It is revealed that the misfit parameter q is 0.5, i.e. the two sublattices of the CoO2 sheet and the Sr2O2 block coexist to form a commensurate composite structure. We propose a structural model with monoclinic P21/m symmetry, which is supported by simulations of ED patterns and HREM images based on dynamical diffraction theory.  相似文献   

15.
We describe in this work the synthesis and crystal structure of five rare earth and Mo(VI) or W(VI) containing complex perovskites. The compounds studied are Ba(Dy2/3Mo1/3)O3, Ba(Dy2/3W1/3)O3, Ba(Gd2/3Mo1/3)O3, Ba(Gd2/3W1/3)O3 and Ba(Sm2/3W1/3)O3 and were prepared starting from solutions, by the polymeric precursors method. Structural characterization by HREM, SAED and powder XRD revealed the five compounds to be ordered cubic perovskites, SG Fm-3m (225), with a cell parameter double of that of a simple perovskite cell and increasing as the size of the trivalent lanthanide ion increases (Dy<Gd<Sm).  相似文献   

16.
The reactions of Mo+ ions and Mo x O y + oxygen-containing molybdenum cluster ions (x = 1-3; y = 1-9) with methane, ethylene oxide, and cyclopropane were studied using ion cyclotron resonance. The formation of a number of organometallic ions, including the metallocarbene MoCH2 + , as well as molybdenum oxometallocarbenes Mo x O y CH2 + (x = 1-3; y = 2, 4, 5, or 8) and Mo x O y (CH4)+ ions (x = 1-3; y = 2, 5, or 8), was detected. The upper and lower limits of bond energies in oxometallocarbene complexes were evaluated: 111 > D 0 (Mo x O y +-CH2) > 82 kcal/mol (x = 1-3; y = 2, 5, 8).  相似文献   

17.
New weberite-type Ca2Ta2O7 and zirconolite-type CaZrTi2O7 polytypes have been prepared by doping with Nd/Zr and Th/Al, respectively, and their structures have been refined using single-crystal X-ray diffraction intensity data. The 3T zirconolite polytype, Ca0.8Ti1.35Zr1.3Th0.15Al0.4O7, has a=7.228(1), c=16.805(1) Å. The 3T weberite-type polytype, Ca1.92Ta1.92Nd0.08Zr0.08O7, has a=7.356(1), c=18.116(1) Å. Both 3T polytypes have space group P3121, Z=6. The 4M Ca2Ta2O7 polytype has the same composition, from electron microprobe analyses, as the 3T polytype, and has cell parameters: a=12.761(1), b=7.358(1), c=24.565(1) Å, β=100.17(1)°, space group C2, Z=16. The structural relationships between the different zirconolite and weberite polytypes are discussed. A consideration of the structures from the viewpoint of anion-centered tetrahedral arrays shows that zirconolite can be considered as an anion-deficient fluorite derivative phase. However, the fluorite-type topology of edge-shared OM4 tetrahedra is not maintained in the Ca2Ta2O7 weberite-type polytypes, even though they have a fluorite-like fcc packing of metal atoms. One of the oxygen atoms moves from a tetrahedral Ta3Ca interstice to an adjacent Ta2Ca4 octahedral interstice in the weberite polytypes.  相似文献   

18.
Different polymorphs of MRe2O6 (MFe, Co, Ni) with rutile-like structures were prepared using high-pressure high-temperature synthesis. For syntheses temperatures higher than ∼1573 K, tetragonal rutile-type structures (P42/mnm) with a statistical distribution of M- and Re-atoms on the metal position in the structure were observed for all three compounds, whereas rutile-like structures with orthorhombic or monoclinic symmetry, partially ordered M- and Re-ions on different sites and metallic Re-Re-bonds within Re2O10-pairs were found for CoRe2O6 and NiRe2O6 at a synthesis temperature of 1473 K. According to the XPS measurements, a mixture of Re+4/Re+6 and M2+/M3+ is present in both structural modifications of CoRe2O6 and NiRe2O6. The low-temperature forms contain more Re+4 and M3+ than the high-temperature forms. Tetragonal and monoclinic modifications of NiRe2O6 order with a ferromagnetic component at ∼24 K, whereas tetragonal and orthorhombic CoRe2O6 show two magnetic transitions: below ∼17.5 and 27 K for the tetragonal and below 18 and 67 K for the orthorhombic phase. Tetragonal FeRe2O6 is antiferromagnetic below 123 K.  相似文献   

19.
The dissociation state of the solutes M2MoO4, M2Mo3O10, M2Mo4O13, M2Mo5O16 (MRb or Cs), Na2CrO4·MoO3, K2CrO4·2 MoO3, Cr2Mo3O12 and V2MoO8 was studied cryoscopically in molten K2 Cr2O7 and KNO3 solvents. The freezing point depression, ΔT, of the solvents was obtained by measuring the cooling curves of the binary salt mixtures over unlimited range of solute concentration. The number of foreign ions obtained ν, showed that the solutes were either simply dissociated in the melt into the probable stable species (MoO4)2?, (Mo3O10)2?, (Mo4O13)2? and (Mo5O16)2? or, in some cases after reactions and rearrangements, into (CrMo2O10)2? heteropolyions. The solute V2MoO8, on the other hand, was found to dissolve without any apparent dissociation. An agreement between the experimental and calculated values of activity, a, based on the Temkin and Random Mixing models and that of Van't Hoff's equation support the proposed simple dissocia- tion scheme for K2Cr2O7Cs2MoO4 system.  相似文献   

20.
A new reduced potassium niobate (KNb4O6) of intergrowth type structure containing condensed Nb6O12 clusters has been found. The structure has been determined from HREM images. The atomic positions have been refined with the Rietveld technique using X-ray powder diffraction data. The space group of KNb4O6 is P4/mmm; Z = 1, and its unit cell parameters are a = 4.1393(1) and c = 8.2537(2). KNb4O6 consists of alternating slabs of KNbO3 (perovskite) and NbO (ordered deficient NaCl-type) both being a single unit thick. The structure is closely related to that of A2Nb5O9 (A = Ba, Sr). Both phases can be considered as members (n = 1 and 2 respectively) of a homologous series AnNb3+nO3+3n. Electron microscopy studies show the presence of defects, both as extra perovskite layers and missing NbO slabs, together with areas of more disordered intergrowth. The profile refinement and microanalysis of individual crystal fragments both indicate the structure to be niobium deficient according to the formula K1+x/2Nb4−xO6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号