首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 528 毫秒
1.
Two new two- or three-dimensional NMR methods for measuring 3hJC′N and 2hJC′H coupling constants across hydrogen bonds in proteins are presented. They are tailored to suit the size of the TROSY effect, i.e., the degree of interference between dipolar and chemical shift anisotropy relaxation mechanisms. The methods edit 2D or 3D spectra into two separate subspectra corresponding to the two possible spin states of the 1HN spin during evolution of 13CO coherences. This allows 2hJC′H to be measured in an E.COSY-type way while 3hJC′N can be measured in the so-called quantitative way provided a reference spectrum is also recorded. A demonstration of the new methods is shown for the 15N,13C-labeled protein chymotrypsin inhibitor 2.  相似文献   

2.
Dynamics in a DNA decamer duplex,d(CATTTGCATC) ·d(GATGCAAATG), were investigated via a detailed13C NMR relaxation study. Every 2′-deoxyadenosine and 2′-deoxyguanidine was chemically enriched with 15%13C and 98%15N isotopes. Six nuclear relaxation parameters [R(13Cz),R(1Hz),R(21Hz13Cz),R(13Cx),R(21Hz13Cx) and steady-state13C{1H} NOE] were measured at 600 MHz and three were measured at 500 MHz (1H frequency) for the CH spin systems of sugar 1′, 3′, and 4′ as well as base 8 and 2 positions. A dependence of relaxation parameter values on chemical position was clearly observed; however, no sequence-specific variation was readily evident within our experimental error of ∼5–10%, except for 3′ and 5′ termini. It was demonstrated that the random 15%13C enrichment effectively suppressed both scalar and dipolar contributions of the neighboring carbons and protons on the relaxation parameters. To analyze dynamics via all observed relaxation parameters, full spectral density mapping (1992, J. W. Peng and G. Wagner,J. Magn. Reson.98, 308) and the “model-free” approach (1982, Lipari and Szabo,J. Am. Chem. Soc.104, 4546) were applied complementarily. A linear correlation between three spectral density values,JC),JH− ωC), andJH+ ωC) was observed in plots containing all measured values, but not for the other spectral density terms includingJ(0). These linear correlations reflect the effect of overall motion and similar internal motions for each CH vector in the decamer. The correlations yielded two correlation times, 3–4 ns and 10–200 ps. One value, 3–4 ns, corresponds to the value of 3.3 ns obtained for the overall isotropic tumbling correlation time determined from analysis of13C T1/T2 ratios. The possibility of overall anisotropic tumbling was examined, but statistical analysis showed no advantage over the assumption of simple isotropic tumbling. Lack of correlations entailingJ(0) implies that a relatively slow chemical exchange contributes to yielding of effectiveJeff(0) values. Based on spectral density mapping and the T1/T2 ratio analysis, three basic assumptions were initially employed (and subsequently justified) for the model-free calculation: isotropic overall tumbling, one internal motion, and the presence of chemical exchange terms. Except for terminal residues, the order parameterS2and the corresponding fast internal motion correlation time were determined to be about 0.8 ± 0.1 and 20 ± 20 ps, respectively, for the various CH vectors. Only a few differences were observed between or within sugars and bases. The internal motion is very fast (ps–ns time scale) and its amplitude restricted; e.g., assuming a simple wobble-in-a-cone model, the internal motion is restricted to an angular amplitude of ±22.5° for each of the 1′, 3′, 4′, 2, and 8 positions in the purine nucleotides in the entire duplex.  相似文献   

3.
The accurate measurement of small spin–spin coupling constants in macromolecules dissolved in a liquid crystalline phase is important in the context of molecular structure investigation by modern liquid state NMR. A new spin-state-selection filter, DIPSAP, is presented with significantly reduced sensitivity to J-mismatch of the filter delays compared to previously proposed pulse sequences. DIPSAP presents an attractive new approach for the accurate measurement of small spin–spin coupling constants in molecules dissolved in anisotropic solution. Application to the measurement of 15N–13C′ and 1HN13C′ coupling constants in the peptide planes of 13C, 15N labeled proteins demonstrates the high accuracy obtained by a DIPSAP-based experiment.  相似文献   

4.
The Fourier transform infrared gas-phase spectrum of thiazole, C3H3NS, has been recorded in the 600-1400 cm−1 wavenumber region with a resolution around 0.0030 cm−1. Nine fundamental bands (ν5(A′) to ν11(A′), ν15(A″), and ν16(A″)) are analysed employing the Watson model. Ground-state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from the fits. A detailed analysis of perturbations identified in the ν11(A′) band at 866.5 cm−1 enables a definitive location of the very weak ν10(A′) and ν14(A″) bands at 879.3 and 888.7 cm−1, respectively. The three levels are analysed simultaneously by a model including Coriolis resonance using an ab initio predicted first order c-Coriolis coupling constant; second and higher order Coriolis parameters are determined. Qualitative explanations in terms of Coriolis resonances are given for a number of crossings observed in ν5(A′), ν6(A′), and ν7(A′) at 1383.7, 1325.8, and 1240.5 cm−1, respectively. The rotational constants, anharmonic frequencies, and vibration-rotation constants (alphas, ) calculated by quantum chemical calculations using a cc-pVTZ and TZ2P basis with B3LYP methodology, have been compared with the present experimental data. The rotation constant differences for each vibrational state, from the ground state values, are closer to experiment from the TZ2P calculations relative to those using cc-pVTZ. The values for ΔJ, ΔJK, ΔK, δJ, and δK are close to experiment with both basis sets.  相似文献   

5.
Pressure-broadening parameters of six lines belonging to the ν5 band of C2H2 in collision with N2 have been measured with a tunable diode-laser spectrometer in order to complete up to J = 33 our earlier measurements (D. Lambot, G. Blanquet, and J. P. Bouanich, J. Mol. Spectrosc.136, 86–92 (1989)) on the broadening of C2H2 by N2 and O2 at 297 K. These N2- and O2-broadening coefficients have been first calculated on the basis of the Anderson-Tsao-Curnutte theory; in this approach, we show that the short-range interactions which contribute significantly to the linewidths are not correctly treated. Next, we consider the improved semiclassical model proposed by Robert and Bonamy. The intermolecular potential consists in the addition of the atom-atom interaction model to the quadrupolar interactions. The limited radial spherical harmonics expansion of the atom-atom potential, from which expressions for the differential cross section were derived, appears to be quite insufficient at short intermolecular distances. Therefore, we use a more accurate representation of this potential, avoiding an inadequate truncation and keeping the analytic expressions obtained by Bonamy and Robert. In the calculations we take into account the contributions derived from the radial functions U000(r), U200(r), and U220(r), as well as from U400(r). A theoretical expression is obtained for the U400 contribution to the differential cross section. The results of the calculations arising from the exact radial expansion of the atom-atom potential appear to be significantly larger for high J lines than those arising from the truncated expansion. The latter results, which do not include adjustable atom-atom parameters, are in good agreement with experimental broadening coefficients for C2H2---O2 and in reasonable agreement (except at large J values) for C2H2---N2. It is also shown that the contributions to the linewidths derived from U400 are rather small for C2H2---N2 and more important for C2H2---O2. Finally, by calculating the collisional linewidths of C2H2---N2 and C2H2---O2 at 200 K, we have predicted their temperature dependences.  相似文献   

6.
A simple method for accurately measuring 3JHNHα coupling constants in 15N-labeled proteins is described. This semi-constant-time HMSQC-HA experiment combines the rapidity and convenience of the recently introduced CT-HMQC-HA scheme (Postingl and Otting, J. Biomol. NMR 12, 319–324 (1998)) with the high resolution and robustness of the HSQC experiment. The proposed method is demonstrated for the 76-residue human ubiquitin and Saccharopolyspora erythraea calerythrin (176 residues). Our results imply that the SCT-HMSQC-HA experiment is suitable also for proteins with less favorable NMR properties due to its good resolution and sensitivity.  相似文献   

7.
Transverse relaxation-optimized NMR experiment (TROSY) for the measurement of three-bond scalar coupling constant between 1Hαi−1 and 15Ni defining the dihedral angle ψ is described. The triple-spin-state-selective experiment allows measurement of 3JHαN from 13Cα, 15N, and 1HN correlation spectra H2O with minimum resonance overlap. Transverse relaxation of 13Cα spin is minimized by using spin-state-selective filtering and by acquiring a signal longer in 15N-dimension in a manner of semi-constant-time TROSY evolution. The 3JHαN values obtained with the proposed α/β-HN(CO)CA-J TROSY scheme are in good agreement with the values measured earlier from ubiquitin in D2O using the HCACO[N] experiment.  相似文献   

8.
The analysis of the rotational structure of the high-resolution Fourier transform 000absorption spectrum of the3A2X1A1band system of the “Wulf” transition of the isotopomer16O3of ozone is reported for the first time. With a near pure case (b) coupling model for the upper triplet state, we have assigned a significant portion of the spectrum, mainly theF1(J=N+ 1) andF2(J=N) spin components, primarily in the lower frequency region of the band. The lines corresponding to theF3(J=N− 1) component are weak at lower frequencies and heavily congested in the central and higher frequency regions of the spectrum. Perturbations and predissociation phenomena have reduced the effective lifetime of the metastable3A2state and have also limited the number of transitions included in the least-squares fit of the band. Approximately 100 lines have been assigned in the range from 9100–9550 cm−1. Three rotational, three centrifugal distortion, three spin–rotation, and one spin–spin constant were varied. The geometry of the molecule in the3A2state, as determined from these constants, isr= 1.345 Å and θ = 98.9°, in good agreement withab initioresults.  相似文献   

9.
A solid-state rotational-echo double resonance (REDOR) NMR method was introduced to identify the ?- and ψ-torsion angle from a 1H–15N or 1H–13C′ spin system of alanine-like residues in a selectively, uniformly, or extensively 15N-/13C-labeled peptide. When a Cα(i) or a 15N peak is site-specifically obtainable in the NMR spectrum of a uniformly 15N/13C-labeled sample system, the ψ- or ?-torsion angle specified by the conformational structure of peptide geometry involving 15N(i)–1Hαi15N(i + 1) or 13C′(i − 1)–1HNi13C′(i) spin system can be identified based on 13Cα- or 15N-detected 1Hα15N or 1HN13C REDOR experiment. This method will conveniently be utilized to identify major secondary motifs, such as α-helix, β-sheet, and β-turn, from a uniformly 15N-/13C-labled peptide sample system. When tested on a 13C-/15N-labeled model system of a three amino acid peptide Gly–[U–13C, 15N]Ala–[U–13C, 15N]Leu, the ψ-angle of alanine obtained experimentally, ψ = −40 ± 30°, agreed reasonably well with the X-ray determined angle, ψ = −39°.  相似文献   

10.
Sets of specifically tailored E.COSY-type correlation experiments and double-quantum/zero-quantum (DQ/ZQ) experiments are presented which enable the determination of sign and size of small heteronuclear coupling constants across the metal center of transition metal complexes. For the octahedrally coordinated complexes, [Ru(TPM)(H)(CO)(PPh3)]+[BF4](1) and [Ir(TPM)(H)(CO)(CO2CH3)]+[BF4](2), 14 of 15 and 15 of 15 possible two-bond scalar coupling constants across the metal center were measured, respectively, using15N and15N/13C enriched samples (TPM = tris(1-pyrazolyl)methane)). The reduced coupling constants2KX-M-Y= 4π22J/(hγXγY) were found to be positive when the coupled nuclei X and Y weretranswith respect to the metal center, and negative when the coupled nuclei were incisposition. The validity of this sign rule was verified forJCC,JNN,JPN,JPC,JCN,JHP,JHC, andJHNcouplings. Idiosyncracies associated with 2D NMR spectra for the sign determination of coupling constants with15N which lead to corrections for the signs ofJHN,JPN, andJCNcouplings reported previously are discussed.  相似文献   

11.
《波谱学杂志》1999,16(2):2
在前文工作的基础上,本文结合MNDO分子轨道方法和最大键级杂化轨道方法研究得到了计算苯及其取代物中孪位偶合常数  相似文献   

12.
Protonation reactions were studied by quantum‐chemical theoretical methods (DFT and MP2) for a series of β,β‐disubstituted vinyldiazonium cations ( 1 + – 14 + ), bearing stabilizing electron‐releasing groups (H3CO? , (H3C)2N? , H3C? , (H3C)3Si? , as well as halogens F, Cl). Taking into account the various mesomeric forms that these species can represent, protonations at Cα, at the β‐substituent, and at Nβ were considered. The energetically most favored pathway in all cases was Cα protonation, which formally corresponds to trapping of the mesomeric diazonium ylid. Based on the computed properties (optimized geometries, NPA‐charge densities, and multinuclear GIAO‐NMR chemical shifts), the resulting dications can best be viewed as carbenium/diazonium dications, in which the carbocation is further delocalized into the β‐substituent. For the α‐nitro derivative 15 , protonation of the nitro group was predicted to be the most favored reaction, while Cα‐ and Nβ‐protonation resulted in the loss of the nitronium ion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Rotational level structure of 12 vibrational states of CH2DI with energies in the 1000-1800 cm−1 region has been retrieved from high resolution (0.001-0.003 cm−1) FTIR spectra. Eleven vibrational states, namely, 21, 3161(A′), 51(A′′), 3161(A′′), 62(A′), 51(A′), 61(A′) 61(A′′), 2131, 62(A′′), 3261(A′) and 3151(A′′) have been found to interact. A total of 27 919 transitions belonging to diverse fundamental, combination and hot bands were assigned and used in the combined nonlinear root mean square fit to give the band centers, rotational, centrifugal distortion and coupling parameters of the states under investigation. The RMS deviation of the fit has been demonstrated to be 0.000218 cm−1. The number of the coupling parameters required to reproduce the observed spectra with the experimental uncertainty appeared to be 46.  相似文献   

14.
Since the introduction of RDCs in high-resolution NMR studies of macromolecules, there is a growing interest in the development of accurate, and sensitive methods for determining coupling constants. Most methods for extracting these couplings are based on the measurement of the splitting between multiplet components in J-coupled spectra. However, these methods are often unreliable since undesired multiple-bond couplings can considerably broaden the multiplet components and consequently make accurate determination of their position difficult. To demonstrate one approach to this problem, G-BIRD(r) decoupled TROSY sequences are proposed for the measurement of 1JNH and 1JNC′ coupling constants. Resolved or unresolved splittings due to remote protons are removed by a G-BIRD(r) module employed during t1 and as a result, spectra with narrow, well-resolved peaks are obtained from which heteronuclear one-bond couplings can be accurately measured. Moreover, introduction of a spin-state-selective α/β-filter in the TROSY sequence allows the separation of the 1JNC′ doublet components into two subspectra which contain the same number of peaks as the regular TROSY spectrum. The 1JNC′ couplings are obtained from the displacement between the corresponding peaks in the subspectra.  相似文献   

15.
Rate constants for electron-vibrational energy exchange Ar(3 P 2) + N2(X 1Σ g +, ν = 0) → Ar(1 S 0) + N2(C 3Π u , ν′), where ν′ = 0, 1, 2, were calculated. Calculations were performed taking into account the presence of a resonance in electron scattering by N2(X 1Σ g +). As a result, the interaction of Ar(3 P 2) with N2(X 1Σ g +, ν = 0) was characterized by attraction and, in the end, intersection of electron-vibrational potential surfaces correlating with Ar(3 P 2) + N2(X 1Σ g +, ν = 0) and Ar(1 S 0) + N2(C 3Π u , ν′) at interparticle distances of 2.5–3.5 ?. Exchange interaction at which electron-vibrational transitions in the region of intersection of electron-vibrational transitions in the region of intersection of electron-vibrational potential surfaces accompanied by spin exchange were induced was calculated by the asymptotic method. The rate constants determined at 300–600 K were on the order of 10−11−10−12 cm3/s and weakly increased as the temperature grew. Mainly the C 3Π u , ν′ = 0 state of the N2 molecule was populated. The calculation results were in satisfactory agreement with the experimental data obtained at 300 K.  相似文献   

16.
The SCF finite perturbation theory of indirect spin-spin coupling constants was applied to 2 J HH and 3 J HH in a series of mono-substituted cyclopropanes, C3H5X. where X=Li, H, CN, CO2H, COCH3, NH2, OH and F. The calculated results are qualitatively consistent with the experimental patterns exhibited by 2 J HH and 3 J HH. Problems were encountered for substituents for which through-space interactions may be important, particularly if X is a -I- substitutent.  相似文献   

17.
The fourth GeH stretching overtone band of monoisotopic H370GeD at 9877 cm−1 has been recorded by ICLAS VeCSEL technique with a path length equivalent to 26 km. The (500 A1/E) band has been observed and rotationally analyzed up to J=18. The band was shown to be essentially unperturbed except some high J states. The assigned transitions were fitted, with σ(Fit) ca. 6.5 × 10−3 cm−1. While eight refined parameters were needed up to Jmax=14, six quartic centrifugal distortion constants were refined in addition for the larger body of 829 data with Jmax=18. The (500 A1/E) parameters of H370GeD perfectly fulfill the theoretical relations valid at the local mode limit, and they fit into the series for other (n00 A1/E) levels (n=2, 3, 6, 7, and 8). A transition moment ratio M(A1):M(E)=0.25 was found to be in best agreement with the observed spectrum, only high J (J?13) transitions being evidently sensitive to this ratio.  相似文献   

18.
Kinetic study has been performed to understand the reactivity of novel cationic gemini surfactants viz. alkanediyl‐α,ω‐bis(hydroxyethylmethylhexadecylammonium bromide) C16‐s‐C16 MEA, 2Br? (where s = 4, 6) in the cleavage of p‐nitrophenyl benzoate (PNPB). Novel cationic gemini C16‐s‐C16 MEA, 2Br? surfactants are efficient in promoting PNPB cleavage in presence of butane 2,3‐dione monoximate and N‐phenylbenzohydroxamate ions. Model calculation revealed that the higher catalytic effect of ethanol moiety of gemini surfactants (C16H33N+ C2H4OH CH3 (CH2)S N+ C2H4OH CH3C16H33, 2Br?, s = 4, 6) is due to their higher binding capacity toward substrate. This is in line with finding that binding constants for novel series of cationic gemini surfactants are higher than conventional cationic gemini (C16H33N+(CH3)2(CH2)SN+(CH3)2C16H33, 2Br?, s = 10, 12), cetyldimethylethanolammonium bromide and zwitterionic surfactants, i.e. CnH2n+1N+Me2 (CH2)3 SO3? (n = 10; SB3‐10). The fitting of kinetic data was analyzed by the pseudophase model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
杨子元 《物理学报》2008,57(7):4512-4520
基于完全对角化方法(complete diagonalization method, CDM), 研究了6S(3d5)态离子在立方对称晶场中的磁相互作用,分析了自旋哈密顿参量(a, gg)的微观起源.研究中除了考虑研究者通常考虑的SO(spin-orbit)磁相互作用外,同时考虑了SS(spin-spin),SOO(spin-other-orbit),OO(orbit-orbit)磁相互作用.研究表明:6S(3d5)态离子在立方对称晶场中的自旋哈密顿参量起源于五种机理,即SO机理,SS机理,SOO机理,OO机理以及SO-SS-SOO-OO联合作用机理.文中研究了五种机理的相对重要性,结果表明:SO机理与SO-SS-SOO-OO联合作用机理在五种机理中最为重要.尽管SS,SOO,OO磁相互作用单独作用时对自旋哈密顿参量的贡献很小,但它们的联合作用SO-SS-SOO-OO机理对自旋哈密顿参量的贡献非常可观.此外研究表明:零场分裂参量a主要来自纯自旋四重态及自旋二重态与自旋四重态联合作用的贡献,而Zeemang(或者Δg)因子主要来自纯自旋四重态的贡献.纯自旋二重态对自旋哈密顿参量ag(或者Δg)的贡献为零.在我们所选择的晶场区域,发现下列关系始终成立:a>0,a(-|Dq|)<a(|Dq|),g(-Dq)=g(Dq),a(-Dq,-ξd,B,C)=a(Dq,ξd, B,C),Δg(-Dq,-ξd, B, C)=Δg(Dq,ξd, B, C).作为本文理论的应用,研究了四种典型的Mn2+掺杂晶体材料,即Mn2+:KZnF3,Mn2+: RbCdF3,Mn2+: MgO,Mn2+: CaO,理论与实验测量符合很好. 关键词: 自旋哈密顿参量 6S(3d5)态离子')" href="#">6S(3d5)态离子 磁相互作用 完全对角化方法(CDM)  相似文献   

20.
A variational procedure for rovibrational energy levels and wavefunctions of centrally connected tetra-atomic molecules is extended to include high rotational states, and in particular, J ? 10 levels for the vibrational ground state of formaldehyde. It is very important to do this because it has made possible the calculation of the usual rotational spectroscopic constants which correspond to the forcefield and geometry. A direct comparison with the ‘observed’ spectroscopic constants is therefore possible. The geometry and forcefield are refined against 65 J = 0 levels of H2CO, 6 J = 0 levels of D2CO, 42 J = 1, 70 J = 2 and 98 J = 3 levels of the ground and fundamentals of H2CO and D2CO, using an iterative scheme. The mean absolute error of the J = 0 levels is 1·10 cm?1 and that for J ≠ 0 is 0·005 cm?1, and the predicted geometry is CH = 1·10064 Å, CO = 1·20296 Å and HCO = 121·648°. Finally, the rotational constants A, B, and C for the ground state are 281956, 38846 and 34003 MHz, compared with the observed values 281971, 38836, and 34002 MHz. The centrifugal distortion constants ΔJ , ΔJK , ΔK and δJ , are 77, 1275, 18113 and 11 kHz compared with 75, 1291, 19422 and 10 kHz. These results underline the accuracy of the new quartic forcefield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号