首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
A method for electrically detected magnetic resonance (EDMR) measurement at different ESR frequencies under a constant alternating magnetic field has been established wherein the accurate relationship between EDMR signal intensity (from a photoexcited silicon crystal and a silicon diode) and a resonant frequency of 300 to 900 MHz (UHF band) was systematically clarified. EDMR signal intensity from a photoexcited silicon crystal against a resonant frequency fitted the curve of y = a(1 - e(-bx)) well, which approached a constant value at higher frequencies. The increase in the EDMR signal intensity from the silicon diode at higher resonant frequencies was smaller than that from the photoexcited silicon crystal. The difference can be explained by the influence of the skin effect; i.e., the microwaves do not penetrate deep into a highly conductive sample at higher frequencies. EDMR signal intensities of samples vs microwave power were measured at 890 MHz. The EDMR signal intensity from the silicon diode continued to increase as the microwave power was increased, while the signal intensity from the photoexcited silicon crystal saturated within the range. The difference can be similarly explained: due to the skin effect, the microwaves gradually penetrate into the silicon diode as the power increases, so that even when saturation has been reached outside, the microwave field inside the diode does not reach the saturation level.  相似文献   

2.
The 3D localized13C spectroscopy methods LINEPT and LODEPT, which are modifications of INEPT and DEPT, are proposed. As long as a13C inversion pulse (180-degree pulse) is applied at 1/(4J) before the proton echo time in LINEPT and a13C excitation pulse (90-degree pulse) is applied at 1/(2J) before the proton echo time in LODEPT, the proton echo time can be set to any value longer than 1/(2J) in LINEPT and longer than 1/Jin LODEPT. As a result, the proton and the13C pulses can be applied separately and these proton pulses can be made slice-selective pulses. These localization features of LINEPT and LODEPT were evaluated using a phantom consisting of a cylinder filled with ethanol placed inside another cylinder filled with oil, and localized ethanol spectra could be obtained.In vivo3D localized13C spectra from the brain of a monkey could be obtained using decoupled LINEPT, and glutamate C-4 appeared directly after the administration of glucose C-1, followed by the appearance of glutamate C-2, C-3 and glutamine C-2, C-3, C-4.  相似文献   

3.
EPR spectroscopy has been applied to measure free radicals in vivo; however, respiratory, cardiac, and other movements of living animals are a major source of noise and spectral distortion. Sample motions result in changes in resonator frequency, Q, and coupling. These instabilities limit the applications that can be performed and the quality of data that can be obtained. Therefore, it is of great importance to develop resonators with automatic tuning and automatic coupling capability. We report the development of automatic tuning and automatic coupling provisions for a 750-MHz transversely oriented electric field reentrant resonator using two electronically tunable high Q hyperabrupt varactor diodes and feedback loops. In both moving phantoms and living mice, these automatic coupling control and automatic tuning control provisions resulted in an 8- to 10-fold increase in signal-to-noise ratio.  相似文献   

4.
The 2,2,6,6-tetramethyl-I-piperidinyloxy free radical (TEMPO) was used as a probe to study the changes in hydrogen bonding between the phenolic OH group and the ON group of the radical by means of NMR and EPR. 13C NMR contact shifts induced by TEMPO were measured for five phenols. Formation of intermolecular hydrogen bond between a phenol and TEMPO molecule causes noticeable increase of 14N hyperfme coupling constant in the radical and appearance of negative spin density on carbon nuclei of C-OH fragment in the phenol.  相似文献   

5.
Two T2-independentJ-difference lactate editing schemes for the PRESS magnetic resonance spectroscopy localization sequence are introduced. The techniques, which allow for simultaneous acquisition of the lactate doublet (1.3 ppm) and edited singlets upfield of and including choline (3.2 ppm), exploit the dependence of the in-phase intensity of the methyl doublet upon the time interval separating two inversion (BASING) pulses applied to its coupling partner after initial excitation. Editing method 1, which allows for echo times TE =n/J(n= 1, 2, 3, …), alters the BASING carrier frequency for each of two cycles so that, for one cycle, the quartet is inverted, whereas, for the other cycle, the quartet is unaffected. Method 2, which also provides water suppression, allows for editing for TE > 1/Jby alternating, between cycles, the time interval separating the inversion pulses. Experimental results were obtained at 1.5 T using a Shinnar Le–Roux-designed maximum phase inversion pulse with a filter transition bandwidth of 55 Hz. Spectra were acquired from phantoms andin vivofrom the human brain and neck. In a neck muscle study, the lipid suppression factor, achieved partly through the use of a novel phase regularization algorithm, was measured to be over 103. Spectra acquired from a primary brain and a metastatic neck tumor demonstrated the presence of lactate and choline signals consistent with abnormal spectral patterns. The advantages and limitations of the methods are analyzed theoretically and experimentally, and significance of the results is discussed.  相似文献   

6.
Three-dimensional image-selected in vivo spectroscopy (ISIS) was combined with phase-cycled 1H–15N heteronuclear multiple-quantum coherence (HMQC) transfer NMR for localized selective observation of protons J-coupled to 15N in phantoms and in vivo. The ISIS–HMQC sequence, supplemented by jump–return water suppression, permitted localized selective observation of 2–5 μmol of [15Nindole]tryptophan, a precursor of the neurotransmitter serotonin, through the 15N-coupled proton in 20–40 min of acquisition in vitro at 4.7 T. In vivo, the amide proton of [5-15N]glutamine was selectively observed in the brain of spontaneously breathing 15NH4+-infused rats, using a volume probe with homogeneous 1H and 15N fields. Signal recovery after three-dimensional localization was 72–82% in phantoms and 59 ± 4% in vivo. The result demonstrates that localized selective observation of 15N-coupled protons, with complete cancellation of all other protons except water, can be achieved in spontaneously breathing animals by the ISIS–HMQC sequence. This sequence performs both volume selection and heteronuclear editing through an addition/subtraction scheme and predicts the highest intrinsic sensitivity for detection of 15N-coupled protons in the selected volume. The advantages and limitations of this method for in vivo application are compared to those of other localized editing techniques currently in use for non-exchanging protons.  相似文献   

7.
The relation between subglottal pressure (Ps) and fundamental frequency (F0) in phonation was investigated with an in vivo canine model. Direct muscle stimulation was used in addition to brain stimulation. This allowed the Ps-F0 slope to be quantified in terms of cricothyroid muscle activity. Results showed that, for ranges of 0–2 mA constant current stimulation of the cricothyroid muscle, the Ps-F0 slope ranged from 10 Hz/kPa to 60 Hz/kPa. These results were compared to similar slopes obtained in a previous study on excised larynges in which the vocal fold length was varied instead of cricothyroid activation. A physical interpretation of the Ps-F0 slope is that the amplitude-to-length ratio of the vocal folds decreases with CT activity, resulting in a smaller time-varying stiffness. In other words, there is less dependence of F0 on amplitude of vibration when the vocal folds are long instead of short.  相似文献   

8.
We study spin 3/2 fermionic cold atoms with attractive interactions confined in a one-dimensional optical lattice. Using numerical techniques, we determine the phase diagram for a generic density. For the chosen parameters, one-particle excitations are gapped and the phase diagram is separated into two regions: one where the two-particle excitation gap is zero, and one where it is finite. In the first region, the two-body pairing fluctuations (BCS) compete with the density ones. In the other one, a molecular superfluid (MS) phase, in which bound-states of four particles form, competes with the density fluctuations. The properties of the transition line between these two regions is studied through the behavior of the entanglement entropy. The physical features of the various phases, comprising leading correlations, Friedel oscillations, and excitation spectra, are presented. To make the connection with experiments, the effect of a harmonic trap is taken into account. In particular, we emphasize the conditions under which the appealing MS phase can be realized, and how the phases could be probed by using the density profiles and the associated structure factor. Lastly, the consequences on the flux quantization of the different nature of the pairing in the BCS and MS phases are studied in a situation where the condensate is in a ring geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号