首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
A 1H and 2H NMR relaxation method was used to investigate the influence of drying and pressing on the pore size and pore size distribution in the cellulose fibre wall. The investigation was made in the moisture interval in which cellulose fibres normally shrink, i.e. from a moisture ratio of about 1.5 g water/g fibre to dry fibres. When the moisture content of a fibre sample was decreased by drying or pressing, the pores decreased in size and the pore size distribution became narrower. It was found that there were only small differences at a given moisture content between the pore size distributions of samples prepared by drying and by pressing. The results also indicate that the pore shrinkage in cellulose fibres during pressing or drying is a process in which the cell wall pores of a wet cellulose fibre successively shrink as the moisture content decreases. It was observed that, at low moisture contents, pressing and drying resulted in different 1H NMR spin-lattice relaxation profiles. This is discussed in terms of morphology differences in the fibre matrix. The mobility of the protons in the solid phase influences the liquid 1H NMR spin-lattice relaxation in heterogeneous systems through magnetization transfer. We have also studied the effects of hornification in recycled pulps  相似文献   

2.
The porous structure of the interior of papermaking fibres is a well-known important property of the fibres. Changes of this structure will influence tensile and burst strength of paper formed from the fibres and a change in pore size of the pores within the fibre wall is also important for the ability of molecules to diffuse in and out of the fibre wall. Relevant examples of this latter effect are the removal of lignin during cooking and the addition of performance chemicals during papermaking. In this paper, pore sizes and the pore size distribution of unbleached softwood fibres have been studied. A well-characterised fibre material consisting of laboratory cooked spruce and pine pulp of various lignin contents was used. Pore size and pore size distribution were measured by studies of the relaxation behaviour of 2H in fibres saturated with 2H2O. Beside this the total and surface charge of the fibres were also measured together with strength properties of papers from unbeaten fibres. For both pulps, there is a maximum in pore radius at a yield around 46%. Calculations of fibre wall volume from water retention values and yield levels show that there is a discontinuity in pore radius as a function of the fibre wall volume around a yield of 51%. It is suggested that this discontinuity is caused by the breakdown of the hemicellulose/lignin matrix within the fibre wall at this yield level. The strength of the papers formed from the fibres shows a correlation with the surface charge of the fibres. Based on the change in surface charge with yield and the change in total charge with yield, this correlation is suggested to be due to an opening up of the external part of the fibre wall. This stresses the importance of the chemical composition and physical structure of the outer layer of the fibre wall.  相似文献   

3.
The porosity of monolithic silica columns is measured by using different analytical methods. Two sets of monoliths were prepared with a given mesopore diameter of 10 and 25 nm, respectively and with gradated macropore diameters between 1.8 and 7.5 microm. After preparing the two sets of monolithic silica columns with different macro- and mesopores the internal, external and total porosity of these columns are determined by inverse size-exclusion chromatography (ISEC) using polystyrene samples of narrow molecular size distribution and known average molecular weight. The ISEC data from the 4.6 mm analytical monolithic silica columns are used to determine the structural properties of monolithic silica capillaries (100 microm I.D.) prepared as a third set of samples. The ISEC results illustrate a multimodal mesopore structure (mesopores are pores with stagnant zones) of the monoliths. It is found by ISEC that the ratio of the different types of pores is dependent on the change in diameter of the macropores (serve as flow-through pores). The porosity data achieved from the mercury penetration measurement and nitrogen adsorption as well of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures are correlated with the results we calculated from the ISEC measurements. The ISEC results, namely the multimodal pore structure of the monoliths, reported in several publications, are not confirmed analyzing the pore structures of the different silica monoliths using all other analytical methods.  相似文献   

4.
Interparticle void volumes and porosities of packed capillaries have been determined using intraparticle Donnan exclusion of a small, unretained, co-ionic tracer (nitrate ions). The operational domain of this approach has been characterized for bare silica, reversed-phase, and strong cation-exchange materials (with different particle sizes and intraparticle pore sizes) in dependence of the mobile phase ionic strength. Interparticle porosities agree well with those analyzed by inverse size-exclusion chromatography (ISEC). Limitations to the use of Donnan exclusion (electrostatic exclusion) and ISEC (mechanical exclusion) arise as either type of exclusion becomes noticeable also in the cusp regions between the particles, or as the intraparticle pores are so large that complete electrostatic and size-exclusion are difficult to realize. Our data confirm that intraparticle Donnan exclusion presents a most simple, fast, and reliable approach for the analysis of packing densities.  相似文献   

5.
The adsorption of quaternized poly(vinylpyridine) (QPVP) on controlled pore glass (CPG) size, over the ionic strength range 0.001-0.5 M was found to display nonmonotonic behavior as a function of pore size. Both adsorption kinetics and ionic strength effects deviated dramatically from behavior typical of adsorption on flat surfaces when the ratio of the pore radius Rp to the polymer hydrodynamic radius Rh became smaller than ca. 2. Ionic strength enhancement of adsorption for small pore sizes was observed at much higher salt concentrations than is typical for polycation adsorption on flat surfaces. The amount of polymer adsorbed per unit surface area of glass GammaA, in 0.5 M NaCl, exhibited a shallow maximum at Rp/Rh approximately 5. Since the value of GammaA for small pore size CPG is strongly depressed by the large surface area, an alternative and more interesting observation is that the amount of polymer adsorbed per gram of CPG, Gammaw, displays a strong maximum when Rp is equal to or slightly smaller than Rh. The efficiency with which QPVP binds anionic micelles to (negatively charged) CPG (grams of surfactant/grams of QPVP) increases strongly with diminishing pore size, indicating that the configuration of polycation bound to small pores favors micelle binding. Since the micelles are larger than small pores, the results indicate that when Rp < Rh, adsorbed polycation molecules reside only partially within the pore. The results of this study are supported by simulations of polyelectrolytes within cylindrical cavities.  相似文献   

6.
In this work, a parallel pore model (PPM) and a pore network model (PNM) are developed to provide a state-of-art method for the calculation of several characteristic pore structural parameters from inverse size-exclusion chromatography (ISEC) experiments. The proposed PPM and PNM could be applicable to both monoliths and columns packed with porous particles. The PPM and PNM proposed in this work are able to predict the existence of the second inflection point in the experimental exclusion curve that has been observed for monolithic materials by accounting for volume partitioning of the polymer standards in the macropores of the column. The appearance and prominence of the second inflection point in the exclusion curve is determined to depend strongly on the void fraction of the macropores (flow-through pores), (b) the nominal diameter of the macropores, and (c) the radius of gyration of the largest polymer standard employed in the determination of the experimental ISEC exclusion curve. The conditions that dictate the appearance and prominence of the second inflection point in the exclusion curve are presented. The proposed models are applied to experimentally measured ISEC exclusion curves of six silica monoliths having different macropore and mesopore diameters. The PPM and PNM proposed in this work are able to determine the void fractions of the macropores and silica skeleton, the pore connectivity of the mesopores, as well as the pore number distribution (PND) and pore volume distribution (PVD) of the mesopores. The results indicate that the mesoporous structure of all materials studied is well connected as evidenced by the similarities between the PVDs calculated with the PPM and the PNM, and by the high pore connectivity values obtained from the PNM. Due to the fact that the proposed models can predict the existence of the second inflection point in the exclusion curves, the proposed models could be more applicable than other models for ISEC characterization of chromatographic columns with small diameter macropores (interstitial pores) and/or large macropore (interstitial pore) void fractions. It should be noted that the PNM can always be applied without the use of the PPM, since the PPM is an idealization that considers an infinitely connected porous medium and for materials having a low (<6) pore connectivity the PPM would force the PVD to a lower average diameter and larger distribution width as opposed to properly accounting for the network effects present in the real porous medium.  相似文献   

7.
Membrane permeability and salt rejection of a γ‐alumina nanofiltration membrane were studied and modeled for different salt solutions. Salt rejection was predicted by using the Donnan‐steric pore model, in which the extended Nernst–Planck equation was applied to predict ion transport through the pores. The solvent flux was modeled by using the Hagen–Poiseuille equation by introducing electroviscosity instead of bulk viscosity. γ‐Alumina particles were used for ζ‐potential measurements. The ζ‐potential measurements show that monovalent ions did not adsorb on the γ‐alumina surface, whereas divalent ions were highly adsorbed. Thus, for divalent ions, the model was modified, owing to pore shrinkage caused by ion adsorption. The ζ‐potential lowered the membrane permeability, especially for membranes with a pore radius lower than 3 nm, a ζ‐potential higher than 20 mV, and an ionic strength lower than 0.01 m . The rejection model showed that, for a pore radius lower than 3 nm and for solutions with ionic strengths lower than 0.01 m , there is an optimum ζ‐potential for rejection, because of the concurrent effects of electromigration and convection. Hence, the model can be used as a prediction tool to optimize membrane perm‐selectivity by designing a specific pore size and surface charge for application at specific ionic strengths and pH levels.  相似文献   

8.
Spherical foam growth in Al alloy melt   总被引:6,自引:0,他引:6  
The ultra light metal structure, realizing the light-ness and multifunction of structural material, has a bright future in high-tech and civil fields and is be-coming one of the hotspots in developed countries in 21 century[1―8]. Preparing Al foam by mel…  相似文献   

9.
10.
The adsorption of a metallo-supramolecular coordination polymer (Fe-MEPE) in the cylindrical pores of SBA-15 silica with pure and carboxylic acid (CA) carrying pore walls has been studied. Fe-MEPE is an intrinsically stiff polycation formed by complexation of Fe(II)-acetate with an uncharged ditopic bis-terpyridine ligand. The adsorption affinity and kinetics of the Fe-MEPE chains is strongly enhanced when the pore walls are doped with CA, and when the pH of the aqueous medium or temperature is increased. The initial fast uptake is connected with a decrease of pH of the aqueous solution, indicating an ion-exchange mechanism. It is followed by a slower (presumably diffusion-controlled) further uptake. The maximum adsorbed amount of Fe-MEPE in the CA-doped material corresponds to a monolayer of Fe-MEPE chains disposed side-by-side along the pore walls. The stoichiometry of Fe-MEPE in the pores (determined by XPS) was found to be independent of the loading and similar to that of the starting material. The mean chain length of Fe-MEPE before and after embedding in the CA-doped matrix was studied by solid-state 15N NMR using partially 15N-labeled Fe-MEPE. It is shown that the average chain length of Fe-MEPE is reduced when the complex is incorporated in the pores.  相似文献   

11.
To examine electrostatic effects on the diffusion of macromolecules in membranes, diffusivities of narrow molecular-size fractions of the polyelectrolytes ficoll sulfate and dextran sulfate were measured in polycarbonate track-etch membranes. Radius, number density, and surface charge density of membrane pores were determined from a combination of hydraulic permeability, glucose diffusion, and streaming potential measurements. Molecular charge and Stokes—Einstein radius for each macromolecule fraction were determined from free-solution electrophoretic mobility and diffusivity in a large pore radius membrane, D∞, respectively. As ionic strength was increased from 0.005 to 0.1 M, D∞ for ficoll sulfate remained constant while D∞ for dextran sulfate increased slightly (15-18%). Macromolecule diffusivities in small pore membranes, D, were much more sensitive to ionic strength. For membranes where the ratio of Stokes—Einstein radius to pore radius ranged from 0.08 to 0.29, D/D∞ for ficoll sulfate and dextran sulfate increased by factors ranging from 2.5 to 14 for the same increase in ionic strength. Recent theoretical results for electrostatic double layer interactions in hindered diffusion are in good quantitative agreement with these findings.  相似文献   

12.
Regenerated cellulose films were laminated using very thin layers of the protein Bovine Serum Albumin (BSA) as an adhesive. The wet delamination strength was measured as functions of pH, lamination time, temperature and pressure, as well as cellulose oxidation. Drying at elevated temperature (120 °C) was required for strong adhesion. Oxidation of the cellulose membranes to introduce surface carboxyl/aldehyde groups increased the wet delamination strength by 60%, implying that the peel failures happened at the protein/cellulose interface. The wet delamination force was independent of the pH and ionic strength of solutions used to apply the BSA; whereas adhesion decreased with increasing pH of the rewetting solution. Furthermore, the swelling of the BSA interplay region was also increased at high pH. It is proposed that covalent grafting of BSA onto the oxidized cellulose, and disulfide crosslinking within the protein layer contributed to wet adhesion.  相似文献   

13.
The hygroexpansion of paper was significantly reduced, up to 28% lower amplitude of change when the paper was subjected to a change in relative humidity from 20 to 85% RH, by oxidation of the fibre wall. Never-dried bleached kraft fibres were oxidised with sodium periodate, which specifically oxidises the C2–C3 bond of 1,4-glucans so that the cellulose is partly converted into dialdehyde cellulose. Since both the dry and wet strength of laboratory sheets were significantly improved, the dry tensile strength increased from 24 kNm/kg up to 66 kNm/kg and the relative wet tensile strength increased from 1.5% up to 40%, it is suggested that the aldehydes form hemiacetal linkages within the fibre wall during the consolidation and drying of the sheets. The mechanical, hygroexpansive and moisture sorptive properties of the sheets made from the oxidised fibres were studied. The results showed that the main reason for the reduced hygroexpansion was a decrease in moisture sorptivity, i.e. when the sheets made of fibres with different degrees of cross-linking were subjected to the same change in relative humidity, the more cross-linked fibres showed a smaller change in moisture content. It was also shown that the hygroexpansion coefficient, i.e. the moisture-normalised dimensional change, was not significantly changed by the periodate oxidation, i.e. indicating that there are no improvement in dimensional stability if the paper is subjected to a specific amount of water.  相似文献   

14.
A new hollow fibre liquid phase microextraction technology with an ionic liquid as the carrier was developed to determine the fluoroquinolone antibiotics in milk. In this technology, a porous polypropylene hollow fibre was filled with aqueous ionic liquid and the extraction efficiency of different factors, such as the type of hollow fibre membrane carrier, the pH and ionic strength of the donor solution, the pH of the acceptor solution, the stirring rate and the extraction time, were investigated. The optimised extraction condition was: [OMim][BF4] impregnated in the pores of the hollow fibre; 0.1?mol?L?1 of Na2HPO4 (pH 11.0) as the acceptor solution was injected into the lumen of the hollow fibre; 0.1?mol?L?1 H3PO4 (pH 5.0) was used as the donor solution; 600?rpm was selected as the stirring rate; 120?min was the optimum extraction time. The proposed method provided very high factors with 130-fold, 156-fold and 116-fold enrichment of ofloxacin, ciprofloxacin and enrofloxacin, respectively.  相似文献   

15.
A new low cost inorganic binder system for large volume products like fiber insulation, building materials, etc. has been developed based on sol-gel technology. The precursor for the binder system is an amorphous mineral raw material containing silica as the major component. The sol was prepared by dissolving the amorphous mineral material in formic acid and the mineral was dissolved in a few hours dependent on the molarity of the formic acid. The sol stability was dependent on the solids content and the pH. The gel formation was studied using light scattering and NMR. The results show a growing particle size of particles mainly consisting of silica while the other cations were dissolved in the pore liquid. During the drying of the wet gels, salts of these cations were crystallized in the pores and further decomposed during heating. The derived binder shows good wetting properties to mineral fiber surfaces and a good strength of paper-binder composites. The new binder system applicable to approximately 800°C has a great potential as a substitute for some traditional organic systems.  相似文献   

16.
Monolithic silica capillary columns with i.d. 100 μm and monolithic silica rods were prepared with tetramethoxysilane (TMOS) or a mixture of TMOS and metyltrimethoxysilane (MTMS) using different hydrothermal treatments at T=80 °C or 120 °C. Nitrogen physisorption was applied for the pore characterization of the rods and inverse size exclusion chromatography (ISEC) for that of the capillary columns. Using nitrogen physisorption, it was shown change of pore size and surface area corresponds to that of hydrothermal treatment and silica precursor. The results from ISEC agreed well with those from nitrogen physisorption regarding the pore size distribution (PSD). In addition, the retention factors for hexylbenzene with the ODS-modified capillary columns in methanol/water=80/20 at T=30 °C could also support the results from nitrogen physisorption. Furthermore, column efficiency for the columns was evaluated with alkylbenzenes and three kinds of peptides, leucine-enkephalin, angiotensin II, and insulin. Column efficiency for alkylbenzenes was similar independently of the hydrothermal treatment at T=120 °C. Even for TMOS columns, there was no significant difference in column efficiency for the peptides despite the difference in hydrothermal treatment. In contrast, for hybrid columns, it was possible to confirm the effect on hydrothermal treatment at T=120 °C resulting in a different column efficiency, especially for insulin. This difference supports the results from both nitrogen physisorption and ISEC, showing the presence of more small pores of ca. 3-6 nm for a hybrid silica without hydrothermal treatment at T=120 °C. Consequently, the results suggest that hydrothermal treatment for a hybrid column with higher temperature or longer time is necessary, compared to that for a TMOS column, to provide higher column efficiency with increase in molecular size of solute.  相似文献   

17.
Polybenzimidazole (PBI) in beaded form (250-500 microm) has been characterized in the dry state by scanning electron microscopy (SEM), BET, and nitrogen porosimetry. In the swollen state, it has been characterized by inverse steric exclusion chromatography (ISEC) in tetrahydrofuran, toluene, and water, by ESR of TEMPONE (2,2,6,6-tetramethyl-4-oxo-1-oxypiperidine), and pulse field gradient spin echo (PGSE) NMR spectroscopy, toluene, in tetrahydrofuran, ethanol and water. The dry-state results are in good agreement with the ISEC results obtained in tetrahydrofuran, toluene, and water with regard to the 40-80 nm macroporosity. The swelling-dependent surface area and pore volume detected by ISEC in toluene and water reveal the amphiphilic nature of PBI.  相似文献   

18.
The pH within cell wall pores of filter paper fibers and hemp fibers was assessed by Fluorescence Ratio Imaging (FRIM). It was found that the Donnan effect affected the pH measured within the fibers. When the conductivity of the added liquid was low (0.7 mS), pH values were lower within the cell wall than in the bulk solution. This was not the case at high conductivity (22 mS). The occurrence of the Donnan effect allowed the pH values within pores in normal regions of the cell wall to be compared to the pH in regions with misaligned microfibrils (dislocations) when FRIM was carried out in a low conductivity solution. Surprisingly, no pH difference was observed between normal regions and dislocations, suggesting that pore sizes within the two different regions are approximately the same. In another experiment the Donnan effect was shown to have an effect on hydrolysis of hydrothermally pretreated wheat straw only when conducted in a low conductivity solution and only for xylanase, not cellulases. The hydrolysis experiments indicate that under typical conditions where conductivity is high, the Donnan effect does not lower the pH close to the substrate to an extent that affects enzymatic activity during hydrolysis of lignocellulose.  相似文献   

19.
以丙烯酸(AA)和丙烯酰氧乙基三甲基氯化铵(DAC)为单体, 采用水溶液聚合法制备了P(AA-DAC)聚电解质水凝胶. 采用红外光谱和核磁共振等方法对其结构进行了表征. 研究了不同组成比的聚电解质水凝胶在去离子水、不同pH值溶液以及不同离子强度盐溶液中的溶胀行为. 研究结果表明, 摩尔比为1∶1的聚电解质水凝胶表现出典型的两性聚电解质凝胶的溶胀行为. 离子强度对其溶胀行为有着显著影响, 在溶液离子强度较高时, 凝胶网络的溶胀主要受溶剂向凝胶内部扩散所控制, 满足Fick型扩散规律n≤0.5, 随着溶液离子强度的增加, 凝胶网络平衡含水量增加, 扩散系数增大.  相似文献   

20.
This work deals with the influence of the ionic strength on the sorption of L-phenylalanine and L-tyrosine by a strong basic anion-exchange resin, converted to the hydroxide form with sodium hydroxide. Equilibrium uptake isotherms were obtained for phenylalanine and tyrosine by carrying out batch experiments at different ionic strength values of the solution. The model used to correlate these results is the modified Langmuir equation which has been applied with success to biological systems. Batch kinetic experiments were performed using a packed bed of differential length inserted in a liquid circulation loop and in which the ionic strength of the solution was varied. Moreover, an experiment at variable pH for tyrosine was also performed. Experimental transient concentration profiles were compared to those predicted by the pore diffusion model and enabled the estimation of the intraparticle diffusivities for phenylalanine and tyrosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号