首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the structure and function of two enzymes, alpha-chymotrypsin (CT) and soybean peroxidase (SBP), adsorbed onto single-walled carbon nanotubes (SWNTs). SBP retained up to 30% of its native activity upon adsorption, while the adsorbed CT retained only 1% of its native activity. Analysis of the secondary structure of the proteins via FT-IR spectroscopy revealed that both enzymes undergo structural changes upon adsorption, with substantial secondary structural perturbation observed for CT. Consistent with these results, AFM images of the adsorbed enzymes indicated that SBP retains its native three-dimensional shape while CT appears to unfold on the SWNT surface. This study represents the first in depth investigation of protein structure and function on carbon nanotubes, which is critical in designing optimal carbon nanotube-protein conjugates.  相似文献   

2.
A grapevine nanostructure based on single-walled carbon nanotubes (SWNTs) covalently functionalized with [60]fullerene (C60) has been synthesized and characterized in detail. Investigations into the ball-on-tube carbon nanostructure by ESR spectroscopy indicate a tendency for ground-state electron transfer from the SWNT to the C60 moieties. The cyclic-voltammetric response of the nanostructure film exhibits reversible multiple-step electrochemical reactions of the dispersed C60, which are strikingly similar to those of the C60 derivatives in solution, but with consistent negative shifts in the redox potential. This results from the covalent linkage of C60 to the surfaces of the SWNTs in the form of monomers and manifests the electronic interaction between the C60 and SWNT moieties.  相似文献   

3.
Alkylation of nanotube salts prepared using either lithium, sodium, or potassium in liquid ammonia yields sidewall-functionalized nanotubes that are soluble in organic solvents. Atomic force microscopy and transmission electron microscopy studies of dodecylated SWNTs prepared from HiPco nanotubes and 1-iodododecane show that extensive debundling results from intercalation of the alkali metal into the SWNT ropes. TGA-FTIR analyses of samples prepared from the different metals revealed radically different thermal behavior during detachment of the dodecyl groups. The SWNTs prepared using lithium can be converted into the pristine SWNTs at 180-330 degrees C, whereas the dodecylated SWNTs prepared using sodium require a much higher temperature (380-530 degrees C) for dealkylation. SWNTs prepared using potassium behave differently, leading to detachment of the alkyl groups over the temperature range 180-500 degrees C. These differences can be observed by analysis of the solid-state 13C NMR spectra of the dodecylated SWNTs that have been prepared using the different alkali metals and may indicate differences in the relative amounts of 1,2- and 1,4-addition of the alkyl groups.  相似文献   

4.
A single-walled carbon nanotube (SWNT) is covalently attached to the interior surface of a conical glass micropore electrode (GME) to create a novel amperometric dopamine sensor (SWNT/NH-GME). The SWNT/NH-GME combines the advantages of excellent transport properties of the cone-shaped micropore with the characteristics of a SWNT, exhibiting a dramatic electrocatalytic effect on the oxidation of dopamine (DA). Cyclic voltammetry and amperometric methods were employed to study the electrochemical behavior of the SWNT/NH-GME. The results showed that the SWNT/NH-GME sensor exhibited an excellent immunity from ascorbic acid interference and was able to measure DA concentrations with a detection limit of 4.2 × 10?7 mol/L (S/N = 3).  相似文献   

5.
The spin-dependent transport properties of single ferrocene, cobaltocene, and nickelocene molecules attached to the sidewall of a (4,4) armchair single-walled carbon nanotube via a Ni adatom are investigated by using a self-consistent ab initio approach that combines the non-equilibrium Green's function formalism with the spin density functional theory. Our calculations show that the Ni adatom not only binds strongly to the sidewall of the nanotube, but also maintains the spin degeneracy and affects little the transmission around the Fermi level. When the Ni adatom further binds to a metallocene molecule, its density of states is modulated by that of the molecule and electron scattering takes place in the nanotube. In particular, we find that for both cobaltocene and nickelocene the transport across the nanotube becomes spin-polarized. This demonstrates that metallocene molecules and carbon nanotubes can become a promising materials platform for applications in molecular spintronics.  相似文献   

6.
The series of rhenium (I) tricarbonyl mixed-ligand complexes ReCl(CO)3(Hnbpydt) (n?=?2, 1; n?=?4, 2; bpy?=?bispyridine, dt?=?1,3-dithiole) and ReCl(CO)3(HnbpyTTF) (n?=?2, 3; n?=?3, 4; TTF?=?Tetrathiafulvalene) have been investigated theoretically to explore the effect of COOH functional group on their electronic structures, spectroscopic properties and their properties as dye in a solar cell. The calculated geometry structure and absorption spectrum of 1 and 3 are generally consistent with the experimental results. By attaching the COOH groups on both bpy and dt (TTF in 4) moiety in 2, the nature of LUMO is also contributed by both π*(bpy) and π*(dt) (π*(TTF) in 4), and the absorptions have an obvious red shift compared with 1 and 3. In addition, it can be found that the transition terminates at the orbital populated by the COOH-appended moieties, and the performance of 2 and 4 in the dye-sensitized solar cell can be enhanced as compared with 1 and 3.  相似文献   

7.
Thermal stability and reactivity to oxidation of several nanocomposite systems obtained by encapsulation of metal halides in single-walled carbon nanotubes are studied. Thermogravimetric analysis coupled with Raman spectroscopy allows insight into the various contributing factors, such as charge transfer, strain, and defect formation, and establishing a hierarchy of reactivity for the systems studied (AgX@SWCNTs, with X = Br, I; SWCNTs = arc discharge and HiPCO). The activation energy for oxidation decreases considerably after filling, indicating that filled nanotubes are more amenable to controlled modifications based on chemical reactivity than the originating empty nanotubes. The complete removal of the carbon shell at high temperatures does not preserve the nanowire morphology of the encapsulated halides; these are freed on surfaces in the form of nanoparticles arranged in 1D patterns. Metallic nanoparticles were obtained after hydrogen reduction of the halides, and growth of silicon nanowires in the footprint of the originating nanocomposites was demonstrated from such Co seeds. MX@SWCNTs (M = Ag, Co) can thus be used as environmentally stable nanoscale containers that allow the deliverance of catalytic nanoparticles in a prepatterned and aligned way.  相似文献   

8.
Bioelectrochemical single-walled carbon nanotubes   总被引:21,自引:0,他引:21  
Metalloproteins and enzymes can be immobilized on SWNTs of different surface chemistry. The combination of high surface area, robust immobilization and inherent nanotube electrochemical properties is of promising application in bioelectrochemistry.  相似文献   

9.
The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.  相似文献   

10.
Soluble, ultra-short (length < 60 nm), carboxylated, single-walled carbon nanotubes (SWNTs) have been prepared by a scalable process. This process, predicated on oleum's (100% H2SO4 with excess SO3) ability to intercalate between individual SWNTs inside SWNT ropes, is a procedure that simultaneously cuts and functionalizes SWNTs using a mixture of sulfuric and nitric acids. The solubility of these ultra-short SWNTs (US-SWNTs) in organic solvents, superacid and water is about 2 wt %. The availability of soluble US-SWNTs could open opportunities for forming high performance composites, blends, and copolymers without inhibiting their processibility.  相似文献   

11.
We demonstrate diameter-dependent, progressive alkylcarboxylation of single-walled carbon nanotubes by recycling a modified Billups-Birch reaction. The strong diameter dependence was confirmed by Raman spectroscopy. Alkylcarboxylation made SWNTs soluble in water, allowing the more readily functionalized, smaller diameter nanotubes to be enriched by water extraction.  相似文献   

12.
Facile routes for the synthesis of hybrid materials consisting of regioregular poly(3-octylthiophene)s covalently attached to single-wall carbon nanotubes are presented for the first time. These materials are easily processable using common organic solvents, and at the same time combine the properties of regioregular poly(3-alkylthiophene)s with those of single-wall carbon nanotubes. Moreover, studies of the properties of these materials have provided strong evidence for an electron transfer from the regioregular poly(3-octylthiophene) to the single-wall carbon nanotube.  相似文献   

13.
The electronic properties of single-walled carbon nanotubes (SWCNTs) can be modified by deforming their structure under high pressure. The aim of this study was to use quantum calculations to investigate one such property, the energy band gap, in relation to molecular structures of armchair and zigzag SWCNTs of various sizes and shapes deformed by applied forces. To model the increase in pressure, the degree of flatness (η) of the SWCNTs was adjusted as the primary parameter. The calculations gave accurate C-C bond lengths of the SWCNTs in their distorted states; these distortions significantly affected the electronic properties, especially the energy band gap of the SWCNTs. These results may contribute to a more refined design of new nano-electronic devices.  相似文献   

14.
Protein-assisted solubilization of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
We report a simple method that uses proteins to solubilize single-walled carbon nanotubes (SWNTs) in water. Characterization by a variety of complementary techniques including UV-Vis spectroscopy, Raman spectroscopy, and atomic force microscopy confirmed the dispersion at the individual nanotube level. A variety of proteins differing in size and structure were used to generate individual nanotube solutions by this noncovalent functionalization procedure. Protein-mediated solubilization of nanotubes in water may be important for biomedical applications. This method of solubilization may also find use in approaches for controlling the assembly of nanostructures, and the wide variety of functional groups present on the adsorbed proteins may be used as orthogonal reactive handles for the functionalization of carbon nanotubes.  相似文献   

15.
Discrete dispersion of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWNTs) have been effectively wetted and dispersed in saturated sodium hydroxide (NaOH) alcohol-water solutions with little surface damage or shortening of the tubes; the treated material was dissolvable as individual tubes in many common organic solvents.  相似文献   

16.
By using the spectral moments method, we calculate the infrared spectra of chiral and achiral single-walled carbon nanotubes (SWCNTs) of different diameters and lengths. We show that the number of the infrared modes, their frequencies, and intensities depend on the length and chirality of the nanotubes. Furthermore, the dependence of the infrared spectrum as a function of the size of the SWCNT bundle is analyzed. These predictions are useful to interpret the experimental infrared spectra of SWCNTs.  相似文献   

17.
How short can single-walled carbon nanotubes (SWNTs) be? How stable are such supershort SWNTs (ss-SWNTs)? This work is the first to address these questions. On the basis of binding energy (E(B)), standard heats of formation , and strain energy (E(S)), we found that SWNTs with only one benzene ring in the axial direction, which we refer to as supershort SWNTs (ss-SWNTs), can be thermodynamically stable. On the basis of the data of E(B), , and E(S), the relative stabilities of ss-SWNTs, fullerenes, polycyclic aromatic hydrocarbons, and butadiyne are discussed. This study has laid a theoretical foundation for the possible synthesis of ss-SWNTs.  相似文献   

18.
Single-walled carbon nanotubes (SWCNTs) are a family of structurally related artificial nanomaterials with unusual properties and many potential applications. Most SWCNTs can emit spectrally narrow near-IR fluorescence at wavelengths that are characteristic of their precise diameter and chiral angle. Near-IR fluorimetry therefore offers a powerful approach for identifying the structural species present in SWCNT samples. Such characterization is increasingly important for nanotube production, study, separation, and applications. General-purpose and specialized instruments suitable for SWCNT fluorimetric analysis are described, and methods for interpreting fluorimetric data to deduce the presence and relative abundances of different SWCNT species are presented. Fluorescence methods are highly effective for detecting SWCNTs in challenging samples such as complex environmental or biological specimens because of the methods’ high sensitivity and selectivity and the near absence of interfering background emission at near-IR wavelengths. Current limitations and future prospects for fluorimetric characterization of SWCNTs are discussed.  相似文献   

19.
200 nm-thick super bundles showing a novel polygonization and densely aligned arrangement are found in long single-walled carbon nanotube (SWNT) strands prepared by the vertical floating catalytic method.  相似文献   

20.
Dispersions of single-walled and non-associated carbon nanotubes in aqueous lysozyme solution were investigated by analyzing the stabilizing effect of both protein concentration and pH. It was inferred that the medium pH, which significantly modifies the protein net charge and (presumably) conformation, modulates the mutual interactions with carbon nanotubes. At fixed pH, in addition, the formation of protein/nanotube complexes scales with increasing lysozyme concentration. Electrophoretic mobility, dielectric relaxation and circular dichroism were used to determine the above features. According to circular dichroism, lysozyme adsorbed onto nanotubes could essentially retain its native conformation, but the significant amount of free protein does not allow drawing definitive conclusions on this regard. The state of charge and charge distribution around nanotubes was inferred by combining electrophoretic mobility and dielectric relaxation methods. The former gives information on changes in the surface charge density of the complexes, the latter on modifications in the electrical double layer thickness around them. Such results are complementary each other and univocally indicate that some LYS molecules take part to binding. Above a critical protein/nanotube mass ratio, depletion phenomena were observed. They counteract the stabilization mechanism, with subsequent nanotube/nanotube aggregation and phase separation. Protein-based depletion phenomena are similar to formerly reported effects, observed in aqueous surfactant systems containing carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号