首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The absorption maxima, λmax, of various organic dyes such as indigo, azobenzene, phenylamine, hydrazone, anthraquinone, naphthoquinone, and malachite green were calculated using the AM1, PM3, and PM5 semiempirical molecular orbital theories with the configuration interaction singles (CIS) and random phase approximation (RPA) approaches. The calculated λmax were then compared with the values obtained by CNDO/S, INDO/S, ab initio CIS, and time-dependent density functional theory (TD-DFT). We found that the λmax values calculated by AM1, PM3, and PM5 were in good correlation with the observed λmax values. When B3LYP/cc-pVDZ optimized geometries were used, the square of the correlation coefficients between the calculated and observed λmax, , at the AM1-RPA, PM3-RPA, and PM5-RPA levels were 0.891, 0.897, and 0.927, respectively. In particular, at PM5-RPA//B3LYP/cc-pVDZ was the largest among those obtained from all the other calculations including TD/B3LYP/cc-pVDZ//B3LYP/cc-pVDZ . Accordingly, the standard deviation of the difference between observed and calculated λmax by the linear regression function at PM5-RPA//B3LYP/cc-pVDZ was the smallest. It was therefore concluded that this method was the most promising for the prediction of λmax of various dyes among the computational methods studied here. When AM1 optimized geometries were used, at the AM1-RPA, PM3-RPA, and PM5-RPA levels were 0.822, 0.841, and 0.901, respectively, and they were also comparable to that at TD/B3LYP/cc-pVDZ//B3LYP/cc-pVDZ. Therefore, although some calibration efforts may be needed for AM1 geometries, PM5-RPA(CIS)//AM1 may be a second candidate available for the prediction of the absorption maxima of dyes, especially in the case of emphasizing computational cost.  相似文献   

2.
The potential energy surface for the reaction of the CF3O radicals with CO was investigated. The geometries and vibrational frequencies of the reactants, transition states, intermediates, and products were calculated at the UB3LYP/6-311+G(2d,p), UB3LYP/6-311+G(3df,2p) and UMP2/6-311+G(2d,p) levels of theory. The energies were improved by using the G2M(CC2) and G3B3 methods. The calculation suggests the reaction proceeds via either the fluorine abstraction of CF3O by CO to produce FCO + CF2O with a high energy barrier or the barrierless association of the reactants to form the trans-CF3OCO intermediate. The trans-CF3OCO is predicted to undergo subsequent isomerization to cis-CF3OCO or dissociate directly to the products FCO + CF2O and CF3 + CO2. The collisional stabilization of trans-CF3OCO is dominant at room temperature, while trans-CF3OCO isomerizing to cis-CF3OCO followed by dissociating to CF3 + CO2 is accessible when temperature rises. The reason for only trans-CF3OCO without cis-CF3OCO observable in Ashen’s experiment [S.V. Ahsen, J. Hufen, H. Willner, J.S. Francisco, Chem. Eur. J. 8 (2002) 1189] is cis-CF3OCO can be produced only via the isomerization of trans-CF3OCO, and its yield is inappreciable at a low experimental temperature. The enthalpies of formation for the two conformations of CF3OCO have been deduced: (trans-CF3OCO) = −196.25 kcal mol−1, (trans-CF3OCO) = −197.46 kcal mol−1, (cis-CF3OCO) = −193.64 kcal mol−1, and (cis-CF3OCO) = −194.90 kcal mol−1.  相似文献   

3.
The lithium-doped carbon clusters LiCn, , and (n = 1–10) have been investigated systemically with density functional theory (DFT) method at the B3LYP/6-311+G* level. According to the total energies of different kinds of isomers, the LiCn, , and (n = 1–10) clusters have Li-terminated linear ground states structures, except for LiC2, LiC3, , and (n = 4–6). The incremental binding energies are evaluated to elucidate the stabilities of the clusters with different numbers of carbon atoms for neutral molecules, cations, and anions, respectively. Clear even–odd alternation effects are observed for the stability of the cationic clusters and anionic clusters, while for neutral LiCn clusters the alternation effect is less pronounced. Similarly, the ionization potentials and electron affinities of LiCn also express an obvious parity alternation. In addition, the most favorable dissociation channels are acquired according to the fragmentation energies accompanying various pathways.  相似文献   

4.
Geometrical structure, aromaticity and other properties of , [M(Al2P2)] (M = Li, Na, K, Cu) and N(Al2P2) (N = Be, Mg, Ca, Zn) species are theoretically investigated with density functional theory (DFT) methods. Calculation results show that for species, the planar structure, with D2h symmetry at the 1Ag state, is the global minimum at the B3LYP/6-311+G* level. Natural bond orbital (NBO) analysis indicates the existence of delocalization in the most stable species and its pyramidal complexes. Nucleus-independent chemical shift (NICS) and molecular orbital (MO) analysis further reveal that that pyramidal [M(Al2P2)] and N(Al2P2) species preserve the aromatic nature of the most stable unit.  相似文献   

5.
A systemic density functional theory study of the tin-doped carbon clusters has been carried out using B3LYP method with TZP+ basis set. For each species, the electronic states, relative energies and geometries of various isomers are reported. Except for smaller SnC2 and the largest , the Sn-terminated linear or quasi-linear isomer is the most stable structure for clusters. The electronic ground state is alternate between 3Σ (for n-odd member) and 1Σ (for the n-even member) for linear SnCn and invariably 2Π for linear and , except for SnC/SnC+/SnC,, and . The incremental binding energy diagrams show that strong even–odd alternations in the cluster stability exist for both neutral SnCn and anionic , with their n-even members being much more stable than the corresponding odd n − 1 and n + 1 ones, while for cationic , the alternation effect is less pronounced. These parity effects also reflect in the ionization potential and electron affinity curves. By comparing with the fragmentation energies accompanying various channels, the most favorable dissociation channel for each kind of the clusters are given. All these results are very similar to those obtained previously for the clusters.  相似文献   

6.
This article presents the experimental data of and , obtained at T = 298.15 K and atmospheric pressure, for four binary systems composed of 1,2-dichloropropane (1,2-DCP) and four 2-alkoxyethanols. The 2-alkoxyethanols are 2-methoxyethanol (2-ME), 2-ethoxyethanol (2-EE), 2-propoxyethanol (2-PE) and 2-butoxyethanol (2-BE). The of the mixture has been shown positive for 2-ME, ‘s-shaped’ for all remaining systems, being negative at low and positive at high mole fraction of 1,2-DCP. The values for all binary mixtures are also shown both positive at low and negative at high mole fraction of 1,2-DCP. The experimental results of and were fitted to Redlich–Kister equation to correlate the composition dependence of both excess properties. In this work, data were also used to test the suitability of thermodynamic models (Wilson, NRTL, and UNIQUAC equations) based on local-composition theory. The results have been qualitatively discussed in terms of the polarity, self-association, and hydrogen bond among molecules.  相似文献   

7.
The mechanisms for the three products ZrS+, and ZrOS+ of the title reaction have been studied by using B3LYP/6-311+G* and CCSD(T)/SDD+6-311+G* methods. It is found that both ZrS+ and formations involve the same O/S exchange process via a four-center transition state TS12 to form an intermediate IM2. Exception of that IM2 can dissociate into the ZrS+ product, a favorable intramolecular rearrangement mechanism associated with the formation has been identified, which explains why ZrS+ was excluded as a precusor for the formation and why the lower efficiency of the ZrS+ formation was observed in experiment. For the formation of ZrOS+, two parallel channels (path A and B) yielding their corresponding product isomer have been identified. Path B involving an insertion–elimination mechanism with a calculated barrier underestimated by ca. 25.0 kJ/mol should be attributed to the threshold of 114.8 ± 12.5 kJ/mol assigned in the experiment. But path A should make some contributions to the formation of ZrOS+ at elevated energy.  相似文献   

8.
Structural and electronic properties of semiconductor binary microclusters cations have been investigated using the B3LYP-DFT method in the ranges of n=1, 2 and m=1–7. Full structural optimization, adiabatic ionization potentials calculation and frequency analysis are performed with the basis of 6-311+G(d). The charged-induced structural changes in these cations have been discussed. The strong As–As bond is also favored over Al–As bonds in the cations in comparison with corresponding neutral cluster. With Asm forming the base, adding Al atom(s) in different positions would find the stable structures of cations quickly and correctly. , , and are predicted to be species with high stabilities and possible to be produced experimentally.  相似文献   

9.
Geometry optimization and harmonic vibrational frequency calculations were performed on the and states of HOO and state of HOO. The electron affinity and the term energy () of HOO were calculated at various theory levels. Franck–Condon analyses and spectral simulations were carried out on the and photodetachment processes. The spectral simulations of vibrational structures based on the computed Franck–Condon factors are in excellent agreement with the observed spectra. In addition, the equilibrium geometrical parameters of the state of HOO and state of HOO were obtained in the spectral simulations.  相似文献   

10.
The high temperature reaction of C60 with silver(I) trifluoroacetate followed by 500 °C sublimation and subsequent HPLC purification has led to the isolation of the five trifluoromethyl[60]fullerenes C60(CF3)n (n=2, 4, 6, 8, 10). Four of them have >90% compositional purity. Two of the compounds, C60(CF3)4 and C60(CF3)6, were obtained as C1-symmetry isomers with >90% isomeric purity, and a sample of C60(CF3)2 also contained ca. 15-20% of a Cs-symmetry isomer of C60(CF3)4. The new compounds were characterized by IR and EI mass spectrometry (all five compounds), NMR spectroscopy (C60(CF3)2, C60(CF3)4, and C60(CF3)6), and 2D COSY NMR spectroscopy (C60(CF3)4 and C60(CF3)6). Calculations at the AM1 and DFT levels of theory have led to the prediction of the most likely structures for C60(CF3)2, C1-C60(CF3)4, Cs-C60(CF3)4, and the two most likely structures of C1-C60(CF3)6.  相似文献   

11.
The maximum absorption wavelength , emission wavelength (λem) and the related oscillator strength (f) of the maleimides in the ground and first excited states were calculated by using the DFT, CIS and the time-dependent density functional theory (TD-DFT) methods, where the molecular structures were optimized by DFT/B3LYP/6-31G* calculation. Solvent effects on the maleimides were examined using the PCM simulation at DFT/B3LYP level with the 6-31G* basis set. For N-substituted maleimide, the substituent gives only a slight influence on the maleimide chromophore, while planar conformation of PhMLH leads to the improvement in π-delocalization from substituent to maleimide unit. For 3,4-substituted maleimide, the steric repulsion between substituent and maleimide chromophore influences the extent of π-delocalization and the molecular conformation. The calculated and λem of maleimides are in good agreement with the experimental data. In the gas phase, both absorption and emission peaks are red-shift as compared to the non-substituted maleimide. Under solvent environment, the more planar conformation of PhMLH shows a blue-shift in the calculated and λem as compared with other N-substituted maleimides. For 3,4-substituted maleimides, the effect of substitution produces the most significant spectral red-shift as compared to other maleimides.  相似文献   

12.
Based on both total energy calculations and comparison of experimental and calculated characteristics of photoelectron spectra (PHES), the structural assignment of clusters and has been made using DFT model with recently developed S2LYP functional. The calculated characteristics of PHES for the assigned structures are in excellent agreement with the experimental ones. The electronic structure, geometry and energetic characteristics of low-lying isomers have also been studied. The calculated geometrical parameters of and clusters as well as the geometries of earlier established clusters have been compared with the geometrical characteristics of anionic sodium clusters. The structures of anionic silver and sodium clusters have been found to be very similar. The difference has been observed only for . Based on similarity of the geometries of silver and sodium clusters as well as on the comparison of calculated and experimental characteristics of PHES, the geometry of cluster has been assigned.  相似文献   

13.
Vertical and adiabatic electronic spectra have been investigated by means of combined density functional and multi-reference configuration interaction methods. Spin–orbit coupling has been determined employing a non-empirical spin–orbit mean-field operator. In the vertical absorption spectrum of isolated 7H-adenine, the transitions to the lowest 1 state, the optically bright 1 state, and a so far unknown 1H → (Ryd, σ*)) state are predicted to lie very close to each other. The strong 1 transition at 4.8 eV is the lowest excitation of 1(π → π*) type in 7H-adenine. It is red shifted by about 0.3 eV with respect to the corresponding excitation in the 9H-tautomer. We find the global minimum on the S1 potential energy hypersurface at about 4.2 eV for a 1 electronic structure. A potential well with a minimum at 4.3 eV exhibits mixed 1 character. A planar 1 structure with a potential energy of 4.6 eV constitutes a stationary point on the S1 surface. At the present stage it is unclear whether it corresponds to a minimum or a saddle-point. The lowest-lying 1(π → (Ryd, σ*)) state is metastable with respect to N7–H14 bond dissociation. Its inner (Rydberg) potential well with an adiabatic excitation energy of 4.6 eV represents another minimum on the S1 PEH. From the theoretical results presented in this work, we conclude that isolated 7H-adenine will be able to emit photons for excitation energies below 4.7 eV(264 nm). Above this threshold singlet excited 7H-adenine can undergo ultrafast non-radiative relaxation to the electronic ground state, either by hydrogen detachment via the 1(π → (Ryd, σ*)) channel or via a conical intersection of the 1 state along a ring puckering mode. The 3 T1 state can be efficiently populated via intersystem crossing from one of the S1 potential energy wells. Large-amplitude motions in the T1 state along an out-of-plane distortional coordinate lead to significant configuration interaction of the 1 and 1 structures which lend intensity to the phosphorescence.  相似文献   

14.
We employed static continuum electrostatics and multi-conformation continuum electrostatics (MCCE) methods to determine the reduction potential () of PQ-9 in a section of Photosystem II (PSII). Both methods relied on the finite difference Poisson–Boltzmann (FDPB) solution. The static method brings out a value (0.01 V) that is close to the experimental one (0.05 V), thereby demonstrating that the surrounding environment critically decides the net free energy change. The value obtained from MCCE (0.04 V) is even closer to the observed value, thereby indicating the importance of protein side-chain and proton motions in the electron transfer process. Furthermore, density functional theory-dielectric polarisable continuum model (DFT-DPCM) was employed to calculate the absolute free energy of reduction of plastoquinone-n (PQ-n, where n is the number of isoprenoid units) in N,N dimethyl formamide (DMF) solvent. The DFT-DPCM method produced reduction potential values of −0.59 and −0.65 V for PQ-1 and PQ-9, respectively. These are more or less in agreement with the experimentally reported values of −0.64 and −0.62 V, respectively.  相似文献   

15.
The photoabsorption spectrum of but-2-yne in the range 5.5–11 eV (225–110 nm) has been recorded using a synchrotron radiation source. The spectrum is dominated by three d-type Rydberg series, converging to the first ionisation energy (IE) (π−1, 9.562 eV). Origins of the π3d members are 7.841, 7.977 and 8.018 eV, respectively. Transitions of low intensity, arising from excitation of the π3s state (origin, 6.35 eV) and two π3p Rydberg states (7.38 and 7.51 eV, respectively) have also been identified in the spectrum. Near-threshold electron energy-loss spectra reveal valence excited triplet states at about 5.2 and 5.8 eV, respectively.Electronic excitation energies for valence and Rydberg-type states have been computed using ab initio multi-reference multi-root CI methods. These studies used a triple zeta + polarisation basis set, augmented by diffuse (Rydberg) orbitals, to generate the theoretical singlet and triplet energy manifolds. The correlation of theory and experiment shows the nature of the more intense Rydberg state types, and identification of the main valence and Rydberg bands. Calculated energies for Rydberg states are close to those expected, and there is generally a good correlation between the theoretical and experimental envelopes. It was possible to generate singlet Rydberg states which relate to the 5-lowest IEs of but-2-yne; furthermore, the separation of these sequences shows that the IE order (under D3h symmetry) is: , also supported by direct calculation of the IEs by CI.The lowest valence singlet states are ππ*, optically forbidden, and calculated to lie near 7.3 and 7.6 eV. The states which contribute strongly to the observed spectrum are πσ* near 7.9 eV having excitation, followed by several ππ* and πσ* states between 10.0 and 10.5 eV; an 1E′ antisymmetric combination(2e′2e″ − 2e′2e″) is by far the strongest in intensity. A further group of symmetry-allowed valence states are calculated to lie near 12.3 and 12.9 eV. The two lowest triplet states, both of E′ symmetry (ππ*), have vertical excitation energies of 5.7 and 6.2 eV, but are strongly bent with a trans-CCCC unit (CS and C2h). The theoretical work confirms that, on intensity grounds, valence excited states do not contribute significantly to the spectrum. CI calculations of the ionic states give the ionisation energy sequence (D3h): . Adiabatic structures for the first cation, two triplets, and a singlet (C2h) were obtained; these show shortening of C–C, and lengthening of CC, in a trans-CCCC, as is found with ethyne.  相似文献   

16.
17.
A new uranium (IV) phosphate of proposed formula U2(PO4)2HPO4·H2O, i.e. uranium phosphate-hydrogenphosphate hydrate (UPHPH), was synthesized in autoclave and/or in polytetrafluoroethylene closed containers at 150 °C by three ways: from uranium (IV) hydrochloric solution and phosphoric acid, from uranium dioxide and phosphoric acid and by transformation of the uranium hydrogenphosphate hydrate U(HPO4)2·nH2O. The new product appears similar to the previously published thorium phosphate-hydrogenphosphate hydrate Th2(PO4)2HPO4·H2O (TPHPH). From preliminary studies, it was found that UPHPH crystallizes in monoclinic system (, , , β=91.67(3)° and ). Heated under inert atmosphere, this compound is decomposed above 400 °C into uranium phosphate-triphosphate U2(PO4)P3O10, uranium diphosphate α-UP2O7 and diuranium oxide phosphate U2O(PO4)2.Crystallized cerium (IV) phosphate-hydrogenphosphate hydrate Ce2(PO4)2HPO4·H2O (CePHPH) was also synthesized from (NH4)2Ce(NO3)6 and phosphoric acid solutions by the same method (monoclinic system: , , , β=91.98(1)° and ). When heating above 600 °C, cerium (IV) is reduced into Ce (III) and forms a mixture of CePO4 (monazite structure) and CeP3O9.  相似文献   

18.
We perform a computational mapping study of a family of new inorganic species, based on idea of donor–acceptor type bonding between N+ and a ligand L with a terminal electron lone pair. The nitrogen ion is seen as being in an atomic 1D state, with empty 2p acceptor orbitals [I.S.K. Kerkines., A. Papakondylis, A. Mavridis, J. Phys. Chem. A, 2002, 106, 4435]. We consider a series of small ligands, such as PN, CCH, CCCN, , and others. Chemical bonding analysis confirms the suggested bonding picture as characteristic for experimentally known and as well as for most of the predicted species. A number of these new compounds is found to be thermodynamically stable with respect to the existing or . They are candidates for new synthetic targets.  相似文献   

19.
Low-temperature heat capacities of the solid coordination compound trans-Cu(Ala)2(s) have been measured by a precision automated adiabatic calorimeter over the temperature range from T = 78 K to 390 K. The experimental values of the molar heat capacities in the temperature region were fitted to a polynomial equation of heat capacities (Cp,m) with the reduced temperatures (X), [X = f (T)], by a least square method. The smoothed molar heat capacities and thermodynamic functions of the complex trans-Cu(Ala)2(s) were calculated based on the fitted polynomial. The smoothed values of the molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were tabulated with an interval of 5 K. Enthalpies of dissolution of {Cu(Ac)2·H2O(s) + 2Ala (s)} and 2:1 HAc (aq) in 100 ml of 2 mol dm−3 HCl, respectively, and trans-Cu(Ala)2(s) in the solvent [2:1 HAc (aq) + 2 mol dm−3 HCl] at T = 298.15 K were determined to be , , and by means of an isoperibol solution-reaction calorimeter. The standard molar enthalpy of formation of the compound was determined as from the enthalpies of dissolution and other auxiliary thermodynamic data using a Hess thermochemical cycle.  相似文献   

20.
Reaction of 2-benzoylpyridine thiosemicarbazone (H2Bz4DH, HL1) and its N(4)-methyl (H2Bz4Me, HL2) and N(4)-phenyl (H2Bz4Ph, HL3) derivatives with SnCl4 and diphenyltin dichloride (Ph2SnCl2) gave [Sn(L1)Cl3] (1), [Sn(L1)PhCl2] (2), [Sn(L2)Cl3] (3), (4) [Sn(L3)PhCl2] (5) and [Sn(L3)Ph2Cl] (6). Infrared and 1H, 13C and 119Sn NMR spectra of 1-3, 5 and 6 are compatible with the presence of an anionic ligand attached to the metal through the Npy-N-S chelating system and formation of hexacoordinated tin complexes. The crystal structures of 1-3, 5 and 6 show that the geometry around the metal is a distorted octahedron formed by the thiosemicarbazone and either chlorides or chlorides and phenyl groups. The crystal structure of 4 reveals the presence of and trans [Ph2SnCl4]2−.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号