首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet radiation around 302 nm was produced by sum-frequency generation in beta-barium borate employing a blue and a near-infrared diode laser. The diode-laser-based spectrometer has a mode-hop-free tuning range of 50 GHz and was used for high-resolution spectroscopic detection of sulfur dioxide. Differential measurements of several gas concentrations, at low pressure as well as at ambient atmospheric pressure, were demonstrated. The detection limit in the first implementation of the instrument was about 20 ppm m at atmospheric pressure, essentially limited by interference fringes. Methods for greatly improving this limit are suggested.  相似文献   

2.
This paper reports on the development of a compact analyzer for ammonia monitoring in air, based on a distributed feedback diode laser at 2.005 μm. A dual-beam long-path technique was combined with wavelength modulation detection of absorption in order to reach a detection limit of about 25 ppb, with a 0.2-Hz equivalent noise bandwidth. Retrieval of NH3 concentration was accomplished through a careful spectra analysis procedure based on the formalism of Fourier expansion of the 2nd harmonic signals, also taking into account residual-amplitude-modulation effects. The system was tested on certified gas-mixtures and revealed a good performance in terms of accuracy and reproducibility. Particularly, the short-term precision was found to be about 1 ‰, for NH3 mixing ratios of 10 ppm. Finally, the possibility to make use of the analyzer for measurements of ammonia fluxes from soils is discussed. PACS 42.55.Px; 42.62.Fi; 82.80.Gk  相似文献   

3.
A photoacoustic sensor using a laser diode emitting near 1532 nm in combination with an erbium-doped fibre amplifier has been developed for ammonia trace gas analysis at atmospheric pressure. NH3 concentration measurements down to 6 ppb and a noise-equivalent detection limit below 3 ppb in dry air are demonstrated. Two wavelength-modulation schemes with 1f and 2f detection using a lock-in amplifier were investigated and compared to maximise the signal-to-noise ratio. A quantitative analysis of CO2 and H2O interference with NH3 is presented. Typical concentrations present in ambient air of 400 ppm CO2 and 1.15% H2O (50% relative humidity at 20 °C) result in a NH3 equivalent concentration of 36 ppb and 100 ppb, respectively. PACS 42.62.Fi; 43.35.Ud; 42.55.Px  相似文献   

4.
Spectral investigation around 6115 cm-1 for simultaneous detection of ammonia, methane and ethylene in gas samples is presented. Experimental data on the ν234 combination band of ammonia are reported with a resolution of 1.5 GHz. A trace gas analyzer based on a resonant photoacoustic cell and an external cavity diode laser has been used for detection. A data fitting procedure has been developed in order to improve the system sensitivity and to limit the need of a reference cell. The selected spectral region allows a sensitivity of about 60 ppm for ammonia, 6 ppm for methane and 30 ppm for ethylene with 0.3 mW laser power. An application of simultaneous detection of such molecules in a mixture reproducing their typical abundances in real gas samples from biomass gasification is discussed. PACS 42.62.Fi; 42.55.Px; 82.80.Ch  相似文献   

5.
The formation of aromatics and polycyclic aromatic hydrocarbons (PAH) in flames is still questionable and needs quantitative experimental data to improve the comprehension of these processes. Although aromatics and PAH are considered as the main species involved in soot formation processes, their quantitative detection still remains difficult. Indeed, it requires very sensitive and robust experimental setups enabling their measurements under very low concentrations (ppm order) in sooting flames conditions. The objective of this work is to propose an alternative setup based on laser diagnostics to allow the possibility of some specific studies of aromatics and PAH compounds in an experimentally less complex manner than conventional methods. We have developed a novel experimental setup, based on calibrated laser induced fluorescence (LIF) inside an expanded free jet, to get quantitative measurements of aromatics compounds after their extraction by a microprobe. Indeed, in the supersonic jet, the spectral simplification due to the cooling allows a selective detection of such complex molecules and their quantification. The experimental set-up as well as the first measurements of the benzene molecule formed in low pressure methane flames are presented in details. Potential of the sensitivity of the method is highlighted by determining very low concentrations of benzene (1–10 ppm). PACS 33.20.Lg; 42.62.-b; 42.62.Fi; 47.70.Pq  相似文献   

6.
A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 μm. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA–Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor. Received: 13 July 2001 / Revised version: 11 October 2001 / Published online: 29 November 2001  相似文献   

7.
A compact open-path optical ammonia detector is developed. A tunable external-cavity diode laser operating at 1.5 μm is used to probe absorptions of ammonia via the cavity-enhanced absorption (CEA) technique. The detector is tested in a climate chamber. The sensitivity and linearity of this system are studied for ammonia and water at atmospheric pressure. A cluster of closely spaced rovibrational overtone and combination band transitions, observed as one broad absorption feature, is used for the detection of ammonia. On these molecular transitions a detection limit of 100 ppb (1 s) is determined. The ammonia measurements are calibrated independently with a chemiluminescence monitor. Compared to other optical open-path detection methods in the 1–2 μm region, the present result shows an improved sensitivity for contactless ammonia detection by over one order of magnitude. Using the same set-up, a detection limit of 100 ppm (1 s) is determined for the detection of water at atmospheric pressure. Received: 19 January 2000 / Revised version: 6 March 2000 / Published online: 7 June 2000  相似文献   

8.
A dual-channel hydrogen sulfide (H2S) concentration measuring system based on photoacoustic spectroscopy is described. The system uses a single-mode, fiber-coupled, room-temperature-operated, telecommunication-type diode laser with a wavelength of 1574.5 nm and an output optical power of 40 mW and two identical resonant photoacoustic cells to achieve minimum detectable H2S concentration at 0.5 ppm (3σ) in both measured natural gas streams. The instrument features excellent long-term stability and unattended automatic on-line monitoring even when operated in harsh industrial environments. The potentially deteriorating effect of temporal variation in the natural gas composition was successfully suppressed by applying a spectral baseline correction method and by introducing an additional measurement phase with measurement of a reference gas from which the H2S has been removed. Various tests of the instrument demonstrate its reliable performance and suitability for process-control application. PACS 82.80.Kq; 42.62.Fi; 07.07.Df  相似文献   

9.
We present a new mid-infrared laser spectrometer for high-precision measurements of isotopic ratios of molecules at ppm concentrations. Results are discussed for nitrous oxide (N2O), where a precision of 3‰ for a single measurement and a reproducibility of 6‰ have been achieved for a concentration of 825 ppm. The room-temperature laser source employed is based on difference-frequency generation delivering a continuous-wave power up to 23 μW at wavelengths between 4.3 μm and 4.7 μm and a line width of 1 MHz. Two different measurement methods are compared; wavelength modulation with first-harmonic detection and direct absorption spectroscopy by recording the spectrum with a data-acquisition card. Two different detection schemes were employed; either all isotopomers were measured using the long path (36 m) of the multipass cell or a balanced path length detection scheme was used, where the main isotope was measured with a beam along a shorter path (40 cm) in the multipass cell. A single-pass reference cell was designed, offering two different path lengths for balanced path length detection. All combinations of measurement methods and detection schemes were tested regarding precision of a single measurement and long-term stability. The advantages and disadvantages of various measurement approaches are discussed. PACS 42.62.Fi; 42.65.Ky; 32.10.Bi  相似文献   

10.
Two-dimensional absorption measurements of hemoglobin in (i) a phantom, imitating the optical properties of tissue, and (ii) in-vivo breast tissue are reported. The method is based on quasi-simultaneous balanced absorption measurements of hemoglobin and oxygenated hemoglobin at selected wavelengths in order to minimize baseline fluctuations during spatial scanning of the sample. The method allows the detection of 0.8 cm-diameter inclusions of oxygenated hemoglobin differing by about 30% in its oxygenation state from the surrounding hemoglobin if two-wavelengths balancing is applied. However, small wavelength detunings from the optimum wavelength positions cause considerable fluctuations of the signal baseline and deteriorate the detection sensitivity, if there is an inhomogeneous distribution of another weak wavelength dependent absorber in the sample. Although the optical absorption of water is relatively small for the wavelengths applied, a considerable influence of the water on the signal baseline was observed in in-vivo measurements of the hemoglobin status in healthy breast tissue. For better compensation of interfering water absorption, a third laser wavelength was applied in order to balance the water absorption. The prospects of this new optical technique for screening of breast tumors are discussed. PACS 41.85.Ja; 42.30.Wb; 42.55.Px; 42.62.Be  相似文献   

11.
Open-path ozone measurements performed by mid-IR differential absorption spectroscopy are reported. Ozone spectrum was taken by fast repetitive sweeping of a quantum-cascade laser wavelength over a spectral feature from the ν3 absorption band of ozone, centered at 1031.2 cm-1. Short (100 ns) sweeping times were essential to prevent line-distortions caused by atmospheric turbulence. For fast wavelength sweeping, a technique that employed the thermal chirp during 140 ns excitation pulses was used. The lowest detection limit of 0.3 ppm.m was estimated from the minimum detectable differential absorption. We present the results from cell and open-path measurements over 440 and 5800 m, together with experimental data regarding the tuning range, the tuning rate and the tuning linearity of the QCL while operated with 140 ns excitation pulses. PACS 42.62.Fi; 82.80.Gk; 92.60.Sz  相似文献   

12.
We describe here a sensitive quantum cascade laser absorption spectrometer (QCLAS) employed for aircraft based measurements during the GABRIEL 2005 and HOOVER 2006 and 2007 campaigns. This 3-channel instrument measures CO, HCHO, CH4 and N2O using a 64-m path double corner cube White cell. Performance of the instrument was examined for the four species and precisions for CO, N2O and CH4 were measured in the field to be 0.5, 0.5 and 0.7% respectively (2σ). The 1σ detection limit for HCHO was ∼500 pptv for a 2 s average, while signal averaging of the HCHO over a 2 min time interval resulted in a 150 pptv detection limit with a duty cycle of 60%. PACS  82.80.Gk; 07.88.+y; 42.62.-b; 92.60.H-  相似文献   

13.
Laser-induced fluorescence (LIF)-based spray volume and droplet-size measurements rely on assumptions about the evaporation or accumulation of fluorescent tracers during the evaporation of the droplets. We investigate the time-dependent variation of droplet-size and LIF signal intensity of CO2-laser-heated evaporating water droplets doped with rhodamine 6G. After an initial decrease of fluorescence intensity by 30% due to temperature-dependent diffusion of oxygen into the droplets, the LIF signal remains constant, indicating that the tracers have fully accumulated in the droplet. This evaporation-independent signal can be used as a reference for Mie-scattering-based droplet surface-area measurements that will allow the sensitive observation of spray evaporation and droplet breakup. PACS 42.62.Fi; 32.50.+d; 42.62.Cf  相似文献   

14.
We have developed a compact instrument for sensitive, rapid and continuous measurement of trace gases in air, with results presented here for methane (CH4), nitric oxide (NO), nitrous oxide (N2O) and ammonia (NH3). This instrument takes advantage of recent technology in quantum cascade (QC) lasers and infrared detectors, which allows high sensitivity without cryogenic liquids, e.g., 0.2 ppb (0.2×10-9) of NH3 in air in 1 s. One may substitute a QC laser operating at a different wavelength to measure other gases. The instrument operates continuously, requiring little operator attention, and web-based remote access is provided for instrument control, calibration and data retrieval. The instrument design includes a thermoelectrically (TE) cooled pulsed distributed feedback (DFB) QC laser, a low volume (0.5 l) multipass cell offering 76 m absorption path length and a TE cooled detector. Integrated software for laser control and data analysis using direct absorption provides quantitative trace gas measurements without calibration gases. The instrument may be applied to field measurements of gases of environmental concern. PACS  07.57.Ty; 42.62.Fi; 92.70.Cp  相似文献   

15.
An all-diode-laser-based spectrometer is used for the simultaneous detection of methane, oxygen and water vapour. This is accomplished using a 760-nm diode laser and a 980-nm diode laser in conjunction with difference-frequency generation to 3.4 μm in a periodically poled lithium niobate crystal. Each of the output wavelengths is resonant with one of the molecular species. Simultaneous recordings over a 15-m open path of laboratory air are demonstrated. The recording scheme shows the wide applicability of a diode-laser-based difference-frequency spectrometer for the detection of molecular species in different wavelength ranges. By increasing the frequency of the 760-nm diode laser and decreasing the frequency of the 980-nm diode laser, a maximum continuous tuning range in the mid infrared of 3.6 cm-1 is achieved. This enables the recording of several methane lines at atmospheric pressure. Pressure-dependence studies of methane lineshapes are also performed in an absorption cell. An indoor-air methane background level of 3 ppm is measured. The signal-to-noise ratio in the recorded methane spectra indicates that sub-ppm detection of methane at atmospheric pressure is feasible. Received: 6 March 2000 / Revised version: 19 June 2000 / Published online: 11 October 2000  相似文献   

16.
We report on the remote sensing capability of an integrated path differential absorption lidar (IPDIAL) instrument, for multi-species gas detection and monitoring in the 3.3–3.7 µm range. This instrument is based on an optical parametric source composed of a master oscillator-power amplifier scheme—whose core building block is a nested cavity optical parametric oscillator—emitting up to 10 µJ at 3.3 µm. Optical pumping is realized with an innovative single-frequency, 2-kHz repetition rate, nanosecond microchip laser, amplified up to 200 µJ per pulse in a single-crystal fiber amplifier. Simultaneous monitoring of mean atmospheric water vapor and methane concentrations was performed over several days by use of a topographic target, and water vapor concentration measurements show good agreement compared with an in situ hygrometer measurement. Performances of the IPDIAL instrument are assessed in terms of concentration measurement uncertainties and maximum remote achievable range.  相似文献   

17.
A new prototype of a portable differential photoacoustic measurement system was designed and built. The system applies the gas filter correlation method. A blackbody radiator is used as a radiation source, which allows measurements of great variety of different IR absorbing gases. The prototype exploits the high sensitivity of a cantilever pressure sensor. The differential design allows a selective real time measurement for a single gas in open air or from the flowing sample. For the first time the photoacoustic cell geometry for an acceleration noise damping was integrated to a differential detector. The system has potential applications anywhere that sensitive in-situ-measurements are required: for example in process control technology, air quality monitoring, exhale monitoring, alarm devices and food industry. The measurement of nitric oxide was modeled in the presence of water vapor. As an example the concentration of water vapor, that is acceptable if ppb-level nitric oxide measurements are to be done, was calculated. With a typical band pass filter and a blackbody radiator the amount is 20 ppm with 1.3 s integration time. The concentration was also calculated to diode laser operating at 2.663 μm and quantum cascade laser at 5.263 μm. The respective concentrations were 2 ppm and 6600 ppm.  相似文献   

18.
In-flight measurements of ambient methane, nitrous oxide and water have been made using frequency down-chirped radiation from a compact, pulsed, quantum-cascade laser spectrometer. In three flights from Oxford airport in October 2006 the variations of the concentration of these three trace gases could be measured and related to possible sources in the flight path. PACS 33.20.EA; 42.62.Fi; 42.68.Ca; 85.35.Be  相似文献   

19.
In this paper, we report the sono-synthesis of reduced graphene oxide (rGO) using polyethyleneimine (PEI), and its performance for ammonia vapour detection at room temperature. Graphene oxide (GO) and reduced graphene oxide (rGO) were prepared by sonication method by using low-frequency ultrasound under ambient condition and films were deposited by Doctor Blade method. The rGO, which has vapour accessible structure showed a good sensing response with a minimum detection limit of 1 ppm and the detection range from 1 ppm to 100 ppm. The sensing response was found to be 2% at 1 ppm and 34% at 100 ppm of ammonia and the developed sensor operated at room temperature. The sensor displays a response time of 6 s and a recovery time of 45 s towards 100 ppm of ammonia vapour. The source for the highly sensitive, selective and stable detection of ammonia with negligible interference from other vapours is discussed and reported. We believe reduced graphene oxide (rGO) could potentially be used to manufacture a new generation of low-power portable ammonia sensors.  相似文献   

20.
Anderson TN  Lucht RP  Meyer TR  Roy S  Gord JR 《Optics letters》2005,30(11):1321-1323
A new diode-laser-based UV-absorption sensor for high-speed detection of the hydroxyl radical (OH) is described. The sensor is based on sum-frequency generation of UV radiation at 313.5 nm by mixing the output of a 763-nm distributed-feedback diode laser with that of a 532-nm high-power, diode-pumped, frequency-doubled Nd:YVO4 laser in a beta-barium borate crystal. Approximately 25 microW of UV radiation is generated and used to probe rotational transitions in the A2 Sigma+ -X2II (v' = 0, v" = 0) electronic transition of OH. Single-sweep, single-pass measurements of temperature and OH concentration in a stoichiometric C2H4-air flame are demonstrated at rates up to 20 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号