首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of a new series of 2,6-bis(imino)pyrazinyl ligands, [ArNCPyzCNAr] where the aryl groups Ar = naphtyl, 2,6-dimethylphenyl, 2,6-diisopropylphenyl, 2,4,6-trimethylphenyl, and their iron(II) complexes is described starting from monoacetylpyrazine.  相似文献   

2.
A series of new complexes {2,6-bis[1-((2-methyl-4-methoxyphenyl)imino)ethyl]pyri-dine}MCI2 [M=Fe(Ⅱ) (2), Co(Ⅱ) (3), Ni(Ⅱ) (4), Cu(Ⅱ) (5), Zn(Ⅱ) (6)] have been synthesized. At 25℃, using 500 equiv of methylaluminoxane (MAO), the activities of Fe(Ⅱ), Co(Ⅱ) catalysts can reach 4.02×106 g/mol-Fehatm for ethylene polymerization and 3.98×105 g/mol-Cohatm for ethylene oligomerization. The effects of polymerization conditions such as reaction temperature, Al/M molar ratio and time on the activity of catalyst have been explored.  相似文献   

3.
4.
A series of unsymmetrical mono(imine)pyrroles (L1–L3) were synthesized by microwave irradiation from 2-acetylpyrrole and a series of dimethylanilines with two methyl groups at different positions on the aniline ring. A simplified synthetic method was initiated to prepare the corresponding nickel complexes NiL2 (1–3) with direct condensation of mono(imine)pyrrole and nickel chloride. The compounds were determined using a suite of techniques (i.e. 1H NMR, 13C NMR, IR, EA, MS). L1–L3 and 3 were further characterized by X-ray crystal diffraction. The structure of 3 showed that the ligand chelated to nickel with 2?:?1 M ratio, in spite of a 1?:?1 rate of charge. Application of 1–3 in ethylene polymerization indicated that mono(imino)pyrrole nickel complexes showed low activities. The polymerization reaction time and temperature, as well as the ligand structure, influenced the catalytic performance to some extent. Experimental data showed higher activity as –CH3 on the aniline ring is closer to the imine group.  相似文献   

5.
由三齿配体2,6-二[1-(2-甲基苯基亚胺)乙基]吡啶(L1)和2,6-二[(1-苯基亚胺)乙基]吡啶(L2)分别与NiCl2.6H2O在乙腈中反应,合成了两个吡啶二亚胺基氯化镍配合物L1Ni(Ⅱ)Cl2.CH3CN(1)和L2Ni(Ⅱ)Cl2(2).通过元素分析、IR和1HNMR对配体和配合物进行了结构表征,并测定了配合物1和2的晶体结构.X射线衍射分析结果表明,两个配合物均为五配位扭曲三角双锥构型,属单斜晶系,Cc空间群.配合物1的晶胞参数a=2.5783(5)nm,b=1.4843(3)nm,c=1.5866(3)nm;β=122.82(3),°V=5.1024(18)nm3,Z=4,R1=0.0708,配合物2的晶胞参数a=1.5772(1)nm,b=0.8594(1)nm,c=1.5459(1)nm;β=103.27(1),°V=2.039(2)nm3,Z=4,R1=0.0375.配合物1和2经MAO活化后对乙烯聚合表现出较低的催化活性.  相似文献   

6.
由三齿含氮配体2,6-二[1-(2,6-二甲基苯基亚胺)乙基]吡啶(L1)、2,6-二[1-(2,6-二乙基苯基亚胺)乙基]吡啶(L2)和2,6-二[1-(2,4,6-三甲基苯基亚胺)乙基]吡啶(L3)分别与MnCl2·4H2O在乙腈中反应,合成了3个新的具有较大空间位阻的2,6-吡啶二亚胺基氯化锰配合物L1Mn(Ⅱ)...  相似文献   

7.
A set of vanadium(III) complexes, namely {SNO}VCl2(THF)2 ( 2a , SNO = thiophene‐(N═CH)‐phenol; 2b , SNO = 5‐phenylthiophene‐(N═CH)‐phenol; 2c , SNO = 5‐phenylthiophene‐(N═CH)‐4‐tert ‐butylphenol; 2d , SNO = 5‐methylthiophene‐(N═CH)‐phenol; 2e , SNO = 5‐methylthiophene‐(N═CH)‐4‐tert ‐butylphenol; 2f , SNO = 5‐methylthiophene‐(N═CH)‐2‐methylphenol; 2g , SNO = 5‐methylthiophene‐(N═CH)‐4‐fluorophenol), were synthesized by reaction of VCl3(THF)3 with phenoxy–imine–thiophene proligands ( 1a – g ). All vanadium(III) complexes were characterized using elemental analysis and infrared and electron paramagnetic resonance spectroscopies. Upon activation with methylaluminoxane (MAO), vanadium precatalysts 2a – g proved active in the polymerization of ethylene (213.6–887.2 kg polyethylene (mol[V])−1⋅h−1), yielding high‐density polyethylenes with melting temperatures in the range 133–136 °C and crystallinities varying from 28 to 41%. The 2e/ MAO catalyst system was able to copolymerize ethylene with 1‐hexene affording poly(ethylene‐co ‐1‐hexene)s with melting temperatures varying from 126 to 102 °C and co‐monomer incorporation in the range 3.60–4.00%.  相似文献   

8.
Six 5-coordinate 2,6-bis(imino)pyridine metal complexes, [2,6-(ArN=CMe)2C5H3NMCl2 · nCH3CN] (Ar = 4-MeC6H4, M = Zn, n = 0.5, Zn1, M = Cd, n = 1, Cd1; Ar = 2,6-Et2C6H3, M = Zn, n = 0.5, Zn2, M = Cd, n = 0.5, Cd2; Ar = 2,4,6-Me3C6H2, M = Zn, n = 1, Zn3, M = Cd, n = 1, Cd3), were synthesized in acetonitrile by the reactions of the corresponding bis(imino)pyridines with ZnCl2 or CdCl2 · 2.5H2O, respectively. The structures of Zn1Zn3 and Cd1Cd3 were determined by the single-crystal X-ray diffraction. In all complexes, the ligand is tridentate with further coordination by two chlorides, resulting in a distorted trigonal bipyramid. All complexes self-assemble through hydrogen bonding interactions to form a 3-D supramolecular structure. At 298 K in dichloromethane, all complexes have blue luminescent emissions at 405–465 nm, which can be attributed to ligand-centered π* → π transitions. The zinc and cadmium centers play a key role in enhancing fluorescent emission of the ligands.  相似文献   

9.
A novel nickel(II)-complex Ni[L]Cl2-CH3CN(1) containing the tridentate ligand 2,6-bis[1-(2,4,6- trimethylphenylimino)ethyl]pyridine(L) has been synthesized. The crystal structure of complex 1 was determined by single crystal X-ray diffraction analysis. The catalytic activity of complex 1 for the polymerization of ethylene was studied under activation with methylaluminoxane(MAO).  相似文献   

10.
Reactions of 2,6-bis(bromomethyl)pyridine with 3,5-dimethylpyrazole and 1H-indazole yield the terdentate ligands 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (5) and 2,6-bis(indazol-2-ylmethyl)pyridine (6). The molecular structure of the new compound 6 was determined by single-crystal X-ray diffraction. These ligands react with the CrCl3(THF)3 complex in THF to form neutral complexes of general formula [CrCl3{2,6-bis(azolylmethyl)pyridine-N,N,N}] (7, 8) which are isolated in high yields as stable green solids and characterized by means of elemental analysis, magnetic moments, IR, and mass spectroscopy. Theoretical calculations predict that the thermodynamically preferred structure of the complexes is the fac configuration. After reaction with methylaluminoxane (MAO) the chromium(III) complexes are active in the polymerization of ethylene.  相似文献   

11.
The synthesis, characterization and catalytic activity in ethylene polymerization of novel mononuclear vanadium complexes bearing NNN-tridentate (pyrazolyl-pyridine) ligands are described. With AlEtCl2 as co-catalyst, complexes 1 and 2 produce single-site catalysts that polymerized ethylene affording high density polyethylene with fairly narrow molecular weight distribution.  相似文献   

12.
The series of bidentate N^N iron(II) and cobalt(II) complexes containing 8-(1-aryliminoethylidene) quinaldine derived ligands, 8-[2,6-(R1)2-4-R2-C6H2NC (Me)]-2-Me-C10H5N, were synthesized and characterized by elemental and spectroscopic techniques. The molecular structures of Co1 (R1 = Me, R2 = H), Co3 (R1 = iPr, R2 = H) and Co4 (R1 = R2 = Me) were confirmed as the distorted tetrahedral by single crystal X-ray diffraction. On treatment with modified methylaluminoxane (MMAO), these complexes exhibited good catalytic activities of up to 5.71 × 105 g mol−1(Fe) h−1 for the ethylene dimerization at 30 °C under 10 atm of ethylene, in which iron pre-catalysts produced butenes with a high selectivity for α-butene. The correlation between metal complexes, catalytic activities and the product formed were investigated under various reaction parameters.  相似文献   

13.
The reaction of low-valent ruthenium complexes with 2,6-bis(imino)pyridine ligand, [η2-N3]Ru(η6-Ar) (1) or {[N3]Ru}2(μ-N2) (2) with amine hydrochlorides generates six-coordinate chlorohydro ruthenium (II) complexes with amine ligands, [N3]Ru(H)(Cl)(amine) (4). Either complex 1 or 2 activates amine hydrochlorides 3, and the amines coordinate to the ruthenium center to give complex 4. This is a convenient and useful synthetic approach to form ruthenium complexes with amine and hydride ligands using amine hydrochloride.  相似文献   

14.
Reaction of complex CrCl3(THF)3 with the tris(pyrazolyl)methane ligands, HC(Pz)3, HC(3,5-Me2Pz)3 and their substituted derivatives RC(Pz)3 (R = Me, CH2OH, CH2OSO2Me) in THF lead to the formation of neutral complexes of the types [RC(Pz)3CrCl3] and [RC(3,5-Me2Pz)3CrCl3]. After reaction with methylalumoxane (MAO) these complexes are active in the polymerization of ethylene. The substituent on the methane central carbon atom of the ligand has some influence in polymerization behavior. This compounds present higher activities than similar chromium complexes, in the ethylene polymerization reaction.  相似文献   

15.
A series of bridged bis(pyridinylimino) ligands were efficiently synthesized through the condensation reaction of 4,4′-methylene-bis(2,6-disubstituted aniline) with 2-pyridinecarboxaldehyde or 2-benzoylpyridine. They reacted with (DME)NiBr2 to form dinuclear Ni(II) complexes. All resultant compounds were characterized by elemental analysis, IR spectra as well as the single-crystal X-ray diffraction to confirm the structures of ligands and complexes. Activated with methylaluminoxane (MAO), these nickel complexes showed considerably good activities for ethylene oligomerization and polymerization. Their catalytic activities and the properties of PEs obtained were depended on the arched environment of ligand and reaction conditions.  相似文献   

16.
Reaction of benzotriazole with 2,6-bis(bromomethyl)pyridine and 2,6-pyridinedicarbonyl dichloride yields the tridentate ligands 2,6-bis(benzotriazol-1-ylmethyl)pyridine (1) and 2,6-bis(benzotriazol-1-ylcarbonyl) pyridine (2). The molecular structures of the ligands were determined by single-crystal X-ray diffraction. These ligands react with CrCl3(THF)3 in THF to form neutral complexes, [CrCl3{2,6-bis(benzotriazolyl)pyridine-N,N,N}] (3, 4), which are isolated in high yields as air stable green solids and characterized by mass spectra (ESI), FTIR spectroscopy, UV–Visible, thermogravimetric analysis (TGA), and magnetic measurements. After reaction with methylaluminoxane (MAO), the chromium(III) complexes are active in the polymerization of ethylene showing a bimodal molecular weight distribution. A DFT computational investigation of the polymerization reaction mechanism shows that the most likely reaction pathway originates from the mer configuration when the spacer is CH2 (complex 3) and from the fac configuration when the spacer is CO (complex 4).  相似文献   

17.
Reactions of CrCl3(thf)3 with bis(imino)pyridines gave a series of {bis(imino)pyridine}chromium(III) trichloride complexes, {2,6‐(RN?CMe)2C5H3N}CrCl3 [R = C6HPr2‐2,6 ( 1 ), C6H3Et2‐2,6 ( 2 ), C6H3Me2‐2,6 ( 3 ), C6H2Me3‐2,4,6 ( 4 ), C6H3Me2‐3,5 ( 5 ), C6H5 ( 6 ), cyclohexyl ( 7 ), 2‐methyl‐1‐naphthyl ( 8 ), C6H3F2‐2,6 ( 9 ), C6H3Br2‐2,6 ( 10 ), C6F5 ( 11 )]. Pseudo‐octahedral geometries of 6 , 10 , and 11 were revealed by X‐ray crystallography. The complexes having bulky substituents such as 1 – 4 showed high activity for ethylene polymerization in combination with modified methylaluminoxane (MMAO) to give linear polyethylenes. In sharp contrast, the pentafluorophenyl complex 11 /modified methylaluminoxane system was found to be moderately active for ethylene homopolymerization to give moderately branched polyethylene with only ethyl branches. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3368–3375, 2005  相似文献   

18.
A series of novel 2,6-bis(imino)pyridyl iron complexes {2,6-(2-X-4-Y-5-ZC6H2NCCH3)2C5H3N}FeCl2 (X = Cl, Y = CH3, Z = H (2); X = Br, Y = CH3, Z = H (3); X = F, Y = H, Z = CH3 (4); X = Cl, Y = H, Z = CH3 (5); X = Cl, Y = F (7)) have been synthesized and characterized with elemental analysis and IR. These iron coordinative complexes, activated with methylaluminoxane (MAO), lead to highly active ethylene oligomerization (>107 g/mol Fe h) and the products are mostly linear α-olefins (>90%). The catalytic activities and product properties depend on the substituents on aryl rings and the reaction conditions. As reaction temperature increases, the catalytic activities decrease rapidly and more low-molar-mass products are produced. The product distributions are almost independent of the Al/Fe molar ratio, but the catalytic activities change in different trends when the ortho-substituents on the aryl rings are different. The other three complexes have also been synthesized for comparison to investigate the steric hindrance and electronic effect on the properties of complexes. The complex with adaptable steric hindrance and electronic properties exhibits the highest catalytic activities.  相似文献   

19.
Iron(II) and cobalt(II) complexes ( 7 ‐ 15 ) based on new aldimine 2, 6‐bis[(imino)methyl]pyridine ( 1 , 2 , 4 , 6 ) and ketimine (2, 6‐bis[(imino)ethyl]pyridine ( 3 , 5 ) ligands with bulky chiral aliphatic or aromatic terminal groups have been prepared and characterized by 1H NMR, 13C NMR, IR‐, mass spectroscopy (EI), and elemental analysis. The complex [CoCl2(BBoMP)]·1/2 CHCl3 ( 13 ) (BBoMP: 2, 6‐bis{(R‐(+)‐(bornylimino)‐methyl}pyridine) crystallizes in monoclinic space group P21 with cell dimensions: a = 7.6603(11) Å, b = 28.3153(14) Å, c = 13.537(2) Å, V = 2908.1(6) Å3, Z = 4. The coordination sphere around Co is distorted trigonal bipyramidal.  相似文献   

20.
A series of nickel(II) catalysts containing phenyl and chiral sec‐phenethyl groups, {[(4‐R1‐2‐R2C6H2N?C)2Nap]NiBr2} (Nap: 1,8‐naphthdiyl, R1 = Me, R2 = Ph ( 3a ); R1 = Me, R2 = sec‐phenethyl ( 3b ); R1 = Cl, R2 = sec‐phenethyl ( 3c ); R1 = Me, R2 = Me ( 3d ) were synthesized and characterized. All organic compounds were fully characterized by FT‐IR and NMR spectroscopy and elemental analysis. The single crystal for X‐ray crystallography was isolated from 3a in CH2Cl2/n‐hexane under air; the crystal structure showed a binuclear complex 3a ′, in which each nickel atom was six‐coordinate. The two nickel atoms together with two bromine atoms form a planar four‐membered ring, with a bromine and H2O axial ligands. These complexes, activated by diethylaluminum chloride and chiral nickel pre‐catalysts rac‐ 3c , exhibited good activities (up to 2.85 × 106 g PE (mol Ni h bar)?1) for ethylene polymerization, and produced polyethylene products with a high degree of branching (up to 117 branched per 1000 carbons) at high temperature. The type and amount of branches of the polyethylenes obtained were determined by 1H and 13C NMR spectroscopy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号