首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

5.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

8.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
Universal collision rate constants are calculated for ultracold collisions of two like bosonic or fermionic heteronuclear alkali-metal dimers involving the species Li, Na, K, Rb, or Cs. Universal collisions are those for which the short range probability of a reactive or quenching collision is unity such that a collision removes a pair of molecules from the sample. In this case, the collision rates are determined by universal quantum dynamics at very long range compared to the chemical bond length. We calculate the universal rate constants for reaction of the reactive dimers in their ground vibrational state v = 0 and for vibrational quenching of non-reactive dimers with v ≥ 1. Using the known dipole moments and estimated van der Waals coefficients of each species, we calculate electric field dependent loss rate constants for collisions of molecules tightly confined to quasi-two-dimensional geometry by a one-dimensional optical lattice. A simple scaling relation of the quasi-two-dimensional loss rate constants with dipole strength, trap frequency and collision energy is given for like bosons or like fermions. It should be possible to stabilize ultracold dimers of any of these species against destructive collisions by confining them in a lattice and orienting them with an electric field of less than 20 kV cm(-1).  相似文献   

12.
The effects of reaction barrier height and initial rotational excitation of the reactants on the overall rate of H atom exchange between atomic chlorine and HCl (v = 0) and on the 0 → 1 vibrational excitation of HCl via reactive and nonreactive collisions have been investigated using quasiclassical trajectory techniques. Two empirical LEPS potential energy surfaces were employed in the calculations having reaction barrier heights of 9.84 and 7.05 kcal mol?1. Trajectory studies of planar collisions were carried out on each surface over a range of relative translational energies with the ground-state HCI collision partner given initial rotational excitation corresponding J = 0, 3, and 7. Initial molecular rotation was found to be relatively inefficient in promoting the H atom exchange; the computed rate coefficient for H atom exchange between Cl + HCl (v = 0, J = 7) was only 4 times larger than that for CI + HCI (v = 0, J = 0). The vibrational excitation rate coefficient exhibited a stronger dependence on initial molecular rotational excitation. The observed increase in the vibrational excitation rate coefficient with increasing initial molecular rotational excitation was due primarily to nonreactive intermolecular RV energy transfer. The vibrational excitation rate coefficients increase with decreasing reaction barrier height.  相似文献   

13.
14.
The Ne + H2+-->NeH+ + H proton transfer reaction was studied using the time dependent real wave packet quantum dynamics method at the helicity decoupling level, considering the H2+ molecular ion in the (v=0-4, j=0) vibrorotational states and a wide collision energy interval. The calculated reaction probabilities and reaction cross sections were in a rather good agreement with reanalyzed previous exact quantum dynamics results, where a much smaller collision energy interval was considered. Also, a quite good agreement with experimental data was found. These results suggested the adequacy of the approach used here to describe this and related systems.  相似文献   

15.
李权  王红艳  蒋刚  朱正和 《化学学报》2002,60(2):215-220
基于多体项展式理论方法导出的PuCO分子基态(X^7A")的分析势能函数,用准经典的Monte-Carlo轨线法对Pu(^7Fg)+CO(0,0)和O(^3Pg)+PuC(0,0)的分子反应动力学过程进行了计算。结果表明:Pu(^7Fg)与CO(0,0)碰撞易生成PuCO配合物分子,该反应是无阈能反应,反应截面σ随能量Et的升高而下降,当Et=502.1kJ.mol^-^1时,σ几乎为零。O(^3Pg)与PuC(0,0)碰撞易发生生成Pu+CO的交换反应,该反应无阈能。  相似文献   

16.
We have simulated CF scattering from Si(100) using the molecular dynamics method. Translational energy loss spectra are presented. The shape of the energy loss distribution as a result of internal energy release is analyzed. At the classical turning point, the internal energy of the molecule is mainly in the form of rotational energy. The strong rotational excitation results in additional molecule-surfaces interactions during the latter half of the collision. These additional collisions permit some molecules that initially gain internal energy exceeding the bond strength to ultimately survive the collision process via rotational de-excitation. The rotational motion exhibited by surviving molecules is determined by the combination of the molecular axis orientation and the local surface structure during the collision process. The rotation planes of the surviving molecules are preferentially aligned with the surface normal (cartwheel-like and propeller-like motions). In this study, propeller-like motion of the surviving molecules is predicted. The majority of surviving molecules exhibit a cartwheel-like motion. However, molecules that gain a propeller-like rotation exhibit a much better alignment of their planes-of-rotation compared with molecules exhibiting cartwheel-like motion.  相似文献   

17.
Reactions of HOD(+) with N(2) have been studied for HOD(+) in its ground state and with one quantum of excitation in each of its vibrational modes: (001)--predominately OH stretch, 0.396 eV, (010)--bend, 0.153 eV, and (100)--predominately OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 4 eV. The cross sections for both H(+) and D(+) transfer rise slowly from threshold with increasing collision energy; however, all three vibrational modes enhance reaction much more strongly than equivalent amounts of collision energy and the enhancements remain large even at high collision energy, where the vibration contributes less than 10% of the total energy. Excitation of the OH stretch enhances H(+) transfer by a factor of ~5, but the effect on D(+) transfer is only slightly larger than that from an equivalent increase in collision energy, and smaller than the effect from the much lower energy bend excitation. Similarly, OD stretch excitation strongly enhances D(+) transfer, but has essentially no effect beyond that of the additional energy on H(+) transfer. The effects of the two stretch vibrations are consistent with the expectation that stretching the bond that is broken in the reaction puts momentum in the correct coordinate to drive the system into the exit channel. From this perspective it is quite surprising that bend excitation also results in large (factor of 2) enhancements of both H(+) and D(+) transfer channels, such that its effect on the total cross section at collision energies below ~2 eV is comparable to those from the two stretch modes, even though the bend excitation energy is much smaller. For collision energies above ~2 eV, the vibrational effects become approximately proportional to the vibrational energy, though still much larger than the effects of equivalent addition of collision energy. Measurements of the product recoil velocity distributions show that reaction is direct at all collision energies, with roughly half the products in a sharp peak corresponding to stripping dynamics and half with a broad and approximately isotropic recoil velocity distribution. Despite the large effects of vibrational excitation on reactivity, the effects on recoil dynamics are small, indicating that vibrational excitation does not cause qualitative changes in the reaction mechanism or in the distribution of reactive impact parameters.  相似文献   

18.
Quantum state-to-state dynamics for the H + HBr(υ(i) = 0, j(i) =0) reaction was studied on an accurate ab intio potential energy surface for the electronic ground state of BrH(2). Both the H + HBr → H(2) + Br abstraction reaction and the H' + HBr → H'Br + H exchange reaction were investigated up to a collision energy of 2.0 eV. It was found that the abstraction channel is dominant at lower collision energies, while the exchange channel becomes dominant at higher collision energies. The total integral cross section of the abstraction reaction at a collision energy of 1.6 eV was found to be 1.37 A?(2), which is larger than a recent quantum mechanical result (1.06 A?(2)) and still significantly smaller than the experimental value (3 ± 1 A?(2)). Meanwhile, similar to the previous theoretical study, our calculations also predicted much hotter product rotational state distributions than those from the experimental study. This suggests that further experimental investigations are highly desirable to elucidate the dynamic properties of the title reactions.  相似文献   

19.
The effects of collision energy (Ecol) and five different modes of H2CO+ vibration on the title reaction have been studied over the center-of-mass Ecol range from 0.1 to 3.2 eV, including measurements of product ion recoil velocity distributions. Electronic structure and Rice-Ramsperger-Kassel-Marcus calculations were used to examine properties of various complexes and transition states that might be important along the reaction coordinate. Two product channels are observed, corresponding to Hydrogen Transfer (HT) and Proton Transfer (PT). Both channels are endothermic with similar onset energies of approximately 0.9 eV; however, HT dominates over the entire Ecol range and accounts for 70-85% of the total reaction cross section. Both HT and PT occur by direct mechanisms over the entire Ecol range, and have similar dependence on reactant vibrational and collision energy. Despite these similarities, and the fact that the two channels are nearly isoenergetic and differ only in which product moiety carries the charge, their dynamics appear quite different. PT occurs primarily in large impact parameter stripping collisions, where most of the available energy is partitioned to product recoil. HT, in contrast, results in internally hot products with little recoil energy and a more forward-backward symmetric product velocity distribution. Vibration is found to affect the reaction differently in different collision energy regimes. The appearance thresholds are found to depend only on total energy, i.e., all modes of vibration are equivalent to Ecol. With increasing Ecol, vibrational energy becomes increasingly effective, relative to Ecol, at driving reaction. For HT, this transition occurs just above threshold, while for PT it begins at roughly twice the threshold energy.  相似文献   

20.
Rotational state distributions and state-selected CM-frame angular distributions were measured for HCl (v' = 0, j') products from the reaction of Cl-atoms with tetramethylsilane (TMS) under single collision conditions at a collision energy, E(coll), of 8.2 +/- 2.0 kcal mol(-1). The internal excitation of these products was very low with only 2% of the total energy available partitioned into HCl rotation. A transition state with a quasi-linear C-H-Cl moiety structure was computed and used to explain this finding. A backward peaking differential cross section was also reported together with a product translational energy (T') distribution with a maximum at T' approximately E(coll). This scattering behaviour is accounted for by reactions proceeding through a tight transition state on a highly skewed potential energy surface, which favours collisions at low impact parameters with a strong kinematic constraint on the internal excitation of the products. The large Arrhenius pre-exponential factor previously reported for this reaction is reconciled with the tight differential scattering observed in our study by considering the large size of the TMS molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号