首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
聚类分析是从基因表达谱数据中提取生物医学信息的主要方法之一.针对传统谱聚类算法无法确定聚类个数的问题,提出一种改进的谱聚类算法并将其应用于基因表达谱聚类分析.首先用基因表达谱数据构造Laplacian矩阵,经特征值分解后得到相应的特征值和特征向量,用谱隙来描述相邻特征值的差值;然后通过寻找谱隙序列的最大值来确定聚类个数;最后从单位化的特征向量着手实现数据类别的划分.通过模拟数据与癌症数据的实验,证明了该文算法的有效性.  相似文献   

2.
提出一种新的聚类算法——层次谱聚类算法.该算法在传统二分的SM谱聚类的过程中嵌入了层次聚类算法,目的是为了提高谱聚类的聚类正确率,同时又利用谱聚类纠正了层次聚类过程中所得到的歪斜划分.实验结果表明:提出的层次谱聚类算法的聚类正确率比层次聚类算法、谱聚类算法的聚类正确率都要高,同时又纠正了层次聚类过程中的歪斜划分.  相似文献   

3.
在分析谱聚类原理的基础上,研究了其在社团发现中的应用,提出了快速估计社团数量的新方法.该方法通过计算和分析Laplacian矩阵特征值的分布来估计社团的数量,利用K-means算法对Laplacian矩阵特征向量构造的向量空间进行聚类,实现社团的发现.该算法在真实社会网络和合成网络上做了测试,验证了在社团发现中的准确性和有效性.   相似文献   

4.
硬聚类算法HCM的求解结果通常是局部最优解,本文将遗传算法应用于HCM聚类算法,同时考虑到该算法实现时的效率和开销,最终提出了一种新的算法MHCM聚类算法。测试数据实验表明采用MHCM聚类算法的结果90%以上能够取得全局最优解,远远超出了采用HCM算法所取得全局最优解的次数,证明了本算法的可推广性。  相似文献   

5.
传统流形学习算法虽然是一种常用的有效降维方法,但由于其自身计算结构的限制,往往存在数据分析不足和计算时间较长等问题.为此提出一种基于谱聚类的流形学习算法(spectralclustering locally linear embedding,SCLLE),并对其机理以及优点给予了实例证明.在UCI和NCBI数据集上的实验结果表明,该算法具有较好的识别效果和计算性能.  相似文献   

6.
针对谱聚类算法对尺度参数敏感的问题,利用集成学习算法良好的鲁棒性和泛化能力,提出了一种无监督集成学习算法——谱聚类集成算法.该算法先利用谱聚类的内在特性产生集成学习所需的多个聚类个体,再采用Hungarian算法对生成的聚类个体进行重新标记,计算每个样本点关于每一个类别所占的比例,得到一个成分向量,然后运用对数比变换将所得的成分向量映射到另一个空间,去除成分数据的不适定性,最后对映射后的数据进行聚类,从而得到最终的集成结果.通过对UCI数据集和纹理图像的仿真实验表明,所提算法的聚类准确率与常用的共识函数具有一定的可比性,且运算代价较小,所需时间大约为MCLA算法的一半,同时避免了精确选择谱聚类算法的尺度参数.  相似文献   

7.
针对传统K-means算法的聚类结果依赖初始聚类中心的缺陷,提出了一种基于密度的改进K-means聚类算法,该算法选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-means聚类。针对PAM算法时间复杂度高,且不利于大数据集处理的缺陷,提出了一种基于密度的改进K-medoids聚类算法,在选取初始中心点时根据数据集样本的分布特征选取,使得初始中心点位于不同类簇。UCI机器学习数据库数据集和随机生成的带有噪音点的人工模拟数据集的实验测试证明,基于密度的改进K-means算法和基于密度的改进Kmedoids算法都具有很好的聚类效果,运行时间短,收敛速度快,有抗噪性能。  相似文献   

8.
聚类算法在基因表达数据分析中的应用   总被引:1,自引:0,他引:1  
聚类算法在基因表达数据的分析处理中得到日益广泛的应用.文中对几种典型的聚类算法进行描述,对各算法在基因表达数据处理中的特点,进行评价并提出改进的策略.最后,指出聚类算法在生物信息学应用中的发展趋势。  相似文献   

9.
改进的基于层次聚类的模糊聚类算法   总被引:1,自引:1,他引:0  
针对FCM算法的缺陷,文章提出了一种基于层次聚类的模糊聚类算法(HFCM)。该算法采用凝聚的层次聚类方法,可快速地发现高度聚集的数据区域,并对这些高密度区域进一步进行分析与合并,通过评估函数的评估,找到最优的聚类方案。试验结果表明,该算法具有较高的分类精确度和较高的排除噪声的能力。  相似文献   

10.
一种改进的K-means聚类算法   总被引:1,自引:0,他引:1  
传统的K-means聚类算法对初始聚类中心的依赖程度很大,聚类结果会随聚类中心的选择不同波动很大,为了消除这种中心选择不确定性,提出一种改进的K-means聚类算法,从而有效地改善初始聚类中心点选择的随机性,提高聚类结果的稳定性.仿真实验结果表明,改进后的K-means聚类算法优于传统的算法.  相似文献   

11.
利用测地线距离的改进谱聚类算法   总被引:1,自引:1,他引:0  
针对往复式压缩机故障数据空间分布复杂、常规算法不能有效聚类的问题,提出了一种改进的谱聚类算法.该算法使用新的相似度矩阵计算方式,根据故障数据流形分布的特点引入测地线距离取代欧氏距离作为数据间的关系度量;通过计算各数据点的邻域密度因子有效地识别和剔除了噪声点;利用基于密度的局部欧氏距离调整方法对流形间隙过小的区域进行了处理.在几个人工数据集和往复式压缩机故障数据集上的测试结果表明,改进谱聚类算法对于具有流形分布、多尺度、有噪声、流形间隙过小甚至交叉等特点的数据具有很好的聚类能力,聚类准确率比常规的k-均值和MSCA谱聚类算法分别提高了50.86%和8.6%.  相似文献   

12.
针对传统k-means聚类方法随机选择初始聚类中心而导致的收敛速度慢、聚类效果较差的问题,本文结合空间相似度度量提出一种改进的k-means初始聚类中心选择方法.该方法通过定义空间中样本的相似度,从而选择相似度较小的样本作为初始聚类中心,以减少达到聚类稳定状态的迭代次数,提高聚类的效率.UCI数据集上的实验结果表明,与传统k-means聚类方法相比,本文提出的改进的k-means初始聚类中心选择方法能够使聚类的收敛速度加快,得到良好的聚类效果.  相似文献   

13.
通过研究文本特征选取中权重的计算问题,提出了一种利用特征词的熵函数加权的权值的计算方法,不但考察了特征词的文档频数,而且考察了它们在文档中出现的次数,使选出的特征子集更具有较好的代表性.实验表明,改进后的算法对聚类结果有了一定的改进.  相似文献   

14.
传统K-means 算法对于聚类初始点的选取和距离度量的计算异常敏感,因而很可能导致K-means 算法只能收敛得到局部最优解。为此,提出一种改进的K-means 算法,即K-means 聚类算法最优匹配算法,并进行了相关的算法实验分析。该改进算法首先对传统的K-means 聚类算法进行初始点的选取,并分析聚类结果。然后,分别从初始聚类中心的选择和距离算法的确定进行实验测试,引入轮廓系数评价聚类效果,分析实验结果可知,K-means 聚类算法最优匹配算法具有较好的稳定性和较高的聚类准确率。  相似文献   

15.
改进k中值聚类及其应用   总被引:1,自引:0,他引:1  
文章对划分方法、层次聚类方法以及小波变换进行了介绍,并详细分析了划分方法和层次聚类方法中存在的不足,将划分方法和层次聚类方法相结合,各取所长,提出改进的中值聚类,该方法分别从相似性度量、初始聚类簇及其簇中心的获取两方面对原始的基于划分的聚类方法进行改进.通过在混合数据聚类以及图像分割中的具体应用,验证了本文算法聚类的有效性及适用性.其中,在图像分割应用中,由于数据量的大小直接与图像本身的大小相关,当处理大型图像时,考虑首先对图像进行小波变换,通过对低频信号进行层次聚类从而能够快速有效地获取初始的聚类簇及其中心.  相似文献   

16.
通过将粗糙集和模糊聚类算法相结合, 利用粗糙集中上近似集和下近似集的概念改进模糊聚类算法, 解决了模糊聚类边界不确定的问题, 得到了上近似集和下近似集的聚类结果, 从而实现更好的聚类, 改进算法可以处理边界问题和复杂数据问题. 将改进的粗糙集模糊聚类算法用于研究环糊精聚类, 并将聚类结果与K均值聚类分析算法、 模糊C均值聚类算法相比, 实验结果表明, 改进算法有较好的聚类效果.  相似文献   

17.
采用基于划分的空间聚类方法对地理要素进行聚类时,若仅考虑属性数据,得到与实际空间分布不相符的聚类结果。提出一种考虑空间对象属性特征和空间位置关系的谱聚类方法,首先,计算空间对象的局部离群指数,结合空间格局将样本中的异常点剔除,然后以空间临近为约束条件进行谱聚类分析。以包头地区土壤重金属形态数据为例进行聚类分析,分析结果表明:该方法能够克服谱聚类对初始聚类中心敏感的问题,既能反映属性特征数据的相似程度,又能反映对象的空间分布特性,对空间对象的聚类分析效果优于传统的谱聚类算法。  相似文献   

18.
随着用电设备使用的增多,必需新建变电站来扩大电力负荷输出规模,针对如何快速并有效地确定候选变电站最优站址的问题,提出了一种新型改进磷虾—粒子群优化算法;在算法中,首先将随机产生的初始种群分为两个子种群,分别用于磷虾算法和粒子群算法,然后再将更新后的种群合并,通过种群的分离与合并,所有个体可以彼此交换位置信息,既能增加种群多样性又可避免陷入局部解,并且在保证找到全局最优解的情况下不添加任何附加操作;为了验证算法的有效性,将其用于变电站选址的工程问题中,由仿真结果可知:混合磷虾—粒子群优化算法寻优效率高,结果准确。  相似文献   

19.
一种改进的基于遗传算法的K均值聚类算法   总被引:2,自引:0,他引:2  
结合遗传算法和K均值聚类算法的优点,提出一种改进的基于遗传算法的K均值聚类算法.将遗传算法的编码方法、初始化、适应度函数、选择、交叉和变异等较好地应用于聚类问题,不仅解决了K均值聚类算法中K值难以确定、对初始值敏感以及遗传算法存在收敛性差和容易早熟的缺点,而且实现了聚类中心的优化选择、K值的自动学习和基因的自适应变异等...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号