首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This study examined the association between pressure injuries and complexity of abdominal temperature measured in residents of a nursing facility. The temperature served as a proxy measure for skin thermoregulation. Refined multiscale sample entropy and bubble entropy were used to measure the irregularity of the temperature time series measured over two days at 1-min intervals. Robust summary measures were derived for the multiscale entropies and used in predictive models for pressure injuries that were built with adaptive lasso regression and neural networks. Both types of entropies were lower in the group of participants with pressure injuries (n=11) relative to the group of non-injured participants (n=15). This was generally true at the longer temporal scales, with the effect peaking at scale τ=22 min for sample entropy and τ=23 min for bubble entropy. Predictive models for pressure injury on the basis of refined multiscale sample entropy and bubble entropy yielded 96% accuracy, outperforming predictions based on any single measure of entropy. Combining entropy measures with a widely used risk assessment score led to the best prediction accuracy. Complexity of the abdominal temperature series could therefore serve as an indicator of risk of pressure injury.  相似文献   

2.
We use Magnetospheric Multiscale (MMS) data to study electron kinetic entropy per particle Se across Earth’s quasi-perpendicular bow shock. We have selected 22 shock crossings covering a wide range of shock conditions. Measured distribution functions are calibrated and corrected for spacecraft potential, secondary electron contamination, lack of measurements at the lowest energies and electron density measurements based on plasma frequency measurements. All crossings display an increase in electron kinetic entropy across the shock ΔSe being positive or zero within their error margin. There is a strong dependence of ΔSe on the change in electron temperature, ΔTe, and the upstream electron plasma beta, βe. Shocks with large ΔTe have large ΔSe. Shocks with smaller βe are associated with larger ΔSe. We use the values of ΔSe, ΔTe and density change Δne to determine the effective adiabatic index of electrons for each shock crossing. The average effective adiabatic index is γe=1.64±0.07.  相似文献   

3.
Recently, Savaré-Toscani proved that the Rényi entropy power of general probability densities solving the p-nonlinear heat equation in Rn is a concave function of time under certain conditions of three parameters n,p,μ , which extends Costa’s concavity inequality for Shannon’s entropy power to the Rényi entropy power. In this paper, we give a condition Φ(n,p,μ) of n,p,μ under which the concavity of the Rényi entropy power is valid. The condition Φ(n,p,μ) contains Savaré-Toscani’s condition as a special case and much more cases. Precisely, the points (n,p,μ) satisfying Savaré-Toscani’s condition consist of a two-dimensional subset of R3 , and the points satisfying the condition Φ(n,p,μ) consist a three-dimensional subset of R3 . Furthermore, Φ(n,p,μ) gives the necessary and sufficient condition in a certain sense. Finally, the conditions are obtained with a systematic approach.  相似文献   

4.
Among various modifications of the permutation entropy defined as the Shannon entropy of the ordinal pattern distribution underlying a system, a variant based on Rényi entropies was considered in a few papers. This paper discusses the relatively new concept of Rényi permutation entropies in dependence of non-negative real number q parameterizing the family of Rényi entropies and providing the Shannon entropy for q=1. Its relationship to Kolmogorov–Sinai entropy and, for q=2, to the recently introduced symbolic correlation integral are touched.  相似文献   

5.
We study the contrarian voter model for opinion formation in a society under the influence of an external oscillating propaganda and stochastic noise. Each agent of the population can hold one of two possible opinions on a given issue—against or in favor—and interacts with its neighbors following either an imitation dynamics (voter behavior) or an anti-alignment dynamics (contrarian behavior): each agent adopts the opinion of a random neighbor with a time-dependent probability p(t), or takes the opposite opinion with probability 1p(t). The imitation probability p(t) is controlled by the social temperature T, and varies in time according to a periodic field that mimics the influence of an external propaganda, so that a voter is more prone to adopt an opinion aligned with the field. We simulate the model in complete graph and in lattices, and find that the system exhibits a rich variety of behaviors as T is varied: opinion consensus for T=0, a bimodal behavior for T<Tc, an oscillatory behavior where the mean opinion oscillates in time with the field for T>Tc, and full disorder for T1. The transition temperature Tc vanishes with the population size N as Tc2/lnN in complete graph. In addition, the distribution of residence times tr in the bimodal phase decays approximately as tr3/2. Within the oscillatory regime, we find a stochastic resonance-like phenomenon at a given temperature T*. Furthermore, mean-field analytical results show that the opinion oscillations reach a maximum amplitude at an intermediate temperature, and that exhibit a lag with respect to the field that decreases with T.  相似文献   

6.
The discrepancy among one-electron and two-electron densities for diverse N-electron atomss, enclosing neutral systems (with nuclear charge Z=N) and charge-one ions (|NZ|=1), is quantified by means of mutual information, I, and Quantum Similarity Index, QSI, in the conjugate spaces position/momentum. These differences can be interpreted as a measure of the electron correlation of the system. The analysis is carried out by considering systems with a nuclear charge up to Z=103 and singly charged ions (cations and anions) as far as N=54. The interelectronic correlation, for any given system, is quantified through the comparison of its double-variable electron pair density and the product of the respective one-particle densities. An in-depth study along the Periodic Table reveals the importance, far beyond the weight of the systems considered, of their shell structure.  相似文献   

7.
The aim of this paper is to show that α-limit sets in Lorenz maps do not have to be completely invariant. This highlights unexpected dynamical behavior in these maps, showing gaps existing in the literature. Similar result is obtained for unimodal maps on [0,1]. On the basis of provided examples, we also present how the performed study on the structure of α-limit sets is closely connected with the calculation of the topological entropy.  相似文献   

8.
This study deals with drift parameters estimation problems in the sub-fractional Vasicek process given by dxt=θ(μxt)dt+dStH, with θ>0, μR being unknown and t0; here, SH represents a sub-fractional Brownian motion (sfBm). We introduce new estimators θ^ for θ and μ^ for μ based on discrete time observations and use techniques from Nordin–Peccati analysis. For the proposed estimators θ^ and μ^, strong consistency and the asymptotic normality were established by employing the properties of SH. Moreover, we provide numerical simulations for sfBm and related Vasicek-type process with different values of the Hurst index H.  相似文献   

9.
A possible detection of sub-solar mass ultra-compact objects would lead to new perspectives on the existence of black holes that are not of astrophysical origin and/or pertain to formation scenarios of exotic ultra-compact objects. Both possibilities open new perspectives for better understanding of our universe. In this work, we investigate the significance of detection of sub-solar mass binaries with components mass in the range: 102M up to 1M, within the expected sensitivity of the ground-based gravitational waves detectors of third generation, viz., the Einstein Telescope (ET) and the Cosmic Explorer (CE). Assuming a minimum of amplitude signal-to-noise ratio for detection, viz., ρ=8, we find that the maximum horizon distances for an ultra-compact binary system with components mass 102M and 1M are 40 Mpc and 1.89 Gpc, respectively, for ET, and 125 Mpc and 5.8 Gpc, respectively, for CE. Other cases are also presented in the text. We derive the merger rate and discuss consequences on the abundances of primordial black hole (PBH), fPBH. Considering the entire mass range [102–1]M, we find fPBH<0.70 (<0.06) for ET (CE), respectively.  相似文献   

10.
Private Information Retrieval (PIR) protocols, which allow the client to obtain data from servers without revealing its request, have many applications such as anonymous communication, media streaming, blockchain security, advertisement, etc. Multi-server PIR protocols, where the database is replicated among the non-colluding servers, provide high efficiency in the information-theoretic setting. Beimel et al. in CCC 12’ (further referred to as BIKO) put forward a paradigm for constructing multi-server PIR, capturing several previous constructions for k3 servers, as well as improving the best-known share complexity for 3-server PIR. A key component there is a share conversion scheme from corresponding linear three-party secret sharing schemes with respect to a certain type of “modified universal” relation. In a useful particular instantiation of the paradigm, they used a share conversion from (2,3)-CNF over Zm to three-additive sharing over Zpβ for primes p1,p2,p where p1p2 and m=p1·p2, and the relation is modified universal relation CSm. They reduced the question of the existence of the share conversion for a triple (p1,p2,p) to the (in)solvability of a certain linear system over Zp, and provided an efficient (in m,logp) construction of such a sharing scheme. Unfortunately, the size of the system is Θ(m2) which entails the infeasibility of a direct solution for big m’s in practice. Paskin-Cherniavsky and Schmerler in 2019 proved the existence of the conversion for the case of odd p1, p2 when p=p1, obtaining in this way infinitely many parameters for which the conversion exists, but also for infinitely many of them it remained open. In this work, using some algebraic techniques from the work of Paskin-Cherniavsky and Schmerler, we prove the existence of the conversion for even m’s in case p=2 (we computed β in this case) and the absence of the conversion for even m’s in case p>2. This does not improve the concrete efficiency of 3-server PIR; however, our result is promising in a broader context of constructing PIR through composition techniques with k3 servers, using the relation CSm where m has more than two prime divisors. Another our suggestion about 3-server PIR is that it’s possible to achieve a shorter server’s response using the relation CSm for extended SmSm. By computer search, in BIKO framework we found several such sets for small m’s which result in share conversion from (2,3)-CNF over Zm to 3-additive secret sharing over Zpβ, where β>0 is several times less than β, which implies several times shorter server’s response. We also suggest that such extended sets Sm can result in better PIR due to the potential existence of matching vector families with the higher Vapnik-Chervonenkis dimension.  相似文献   

11.
We present a coupled variational autoencoder (VAE) method, which improves the accuracy and robustness of the model representation of handwritten numeral images. The improvement is measured in both increasing the likelihood of the reconstructed images and in reducing divergence between the posterior and a prior latent distribution. The new method weighs outlier samples with a higher penalty by generalizing the original evidence lower bound function using a coupled entropy function based on the principles of nonlinear statistical coupling. We evaluated the performance of the coupled VAE model using the Modified National Institute of Standards and Technology (MNIST) dataset and its corrupted modification C-MNIST. Histograms of the likelihood that the reconstruction matches the original image show that the coupled VAE improves the reconstruction and this improvement is more substantial when seeded with corrupted images. All five corruptions evaluated showed improvement. For instance, with the Gaussian corruption seed the accuracy improves by 1014 (from 1057.2 to 1042.9) and robustness improves by 1022 (from 10109.2 to 1087.0). Furthermore, the divergence between the posterior and prior distribution of the latent distribution is reduced. Thus, in contrast to the β-VAE design, the coupled VAE algorithm improves model representation, rather than trading off the performance of the reconstruction and latent distribution divergence.  相似文献   

12.
We show that neural networks with an absolute value activation function and with network path norm, network sizes and network weights having logarithmic dependence on 1/ε can ε-approximate functions that are analytic on certain regions of Cd.  相似文献   

13.
In this article, we evaluate the efficiency and performance of two clustering algorithms: AHC (Agglomerative Hierarchical Clustering) and KMeans. We are aware that there are various linkage options and distance measures that influence the clustering results. We assess the quality of clustering using the Davies–Bouldin and Dunn cluster validity indexes. The main contribution of this research is to verify whether the quality of clusters without outliers is higher than those with outliers in the data. To do this, we compare and analyze outlier detection algorithms depending on the applied clustering algorithm. In our research, we use and compare the LOF (Local Outlier Factor) and COF (Connectivity-based Outlier Factor) algorithms for detecting outliers before and after removing 1%, 5%, and 10% of outliers. Next, we analyze how the quality of clustering has improved. In the experiments, three real data sets were used with a different number of instances.  相似文献   

14.
Detrended Fluctuation Analysis (DFA) has become a standard method to quantify the correlations and scaling properties of real-world complex time series. For a given scale of observation, DFA provides the function F(), which quantifies the fluctuations of the time series around the local trend, which is substracted (detrended). If the time series exhibits scaling properties, then F()α asymptotically, and the scaling exponent α is typically estimated as the slope of a linear fitting in the logF() vs. log() plot. In this way, α measures the strength of the correlations and characterizes the underlying dynamical system. However, in many cases, and especially in a physiological time series, the scaling behavior is different at short and long scales, resulting in logF() vs. log() plots with two different slopes, α1 at short scales and α2 at large scales of observation. These two exponents are usually associated with the existence of different mechanisms that work at distinct time scales acting on the underlying dynamical system. Here, however, and since the power-law behavior of F() is asymptotic, we question the use of α1 to characterize the correlations at short scales. To this end, we show first that, even for artificial time series with perfect scaling, i.e., with a single exponent α valid for all scales, DFA provides an α1 value that systematically overestimates the true exponent α. In addition, second, when artificial time series with two different scaling exponents at short and large scales are considered, the α1 value provided by DFA not only can severely underestimate or overestimate the true short-scale exponent, but also depends on the value of the large scale exponent. This behavior should prevent the use of α1 to describe the scaling properties at short scales: if DFA is used in two time series with the same scaling behavior at short scales but very different scaling properties at large scales, very different values of α1 will be obtained, although the short scale properties are identical. These artifacts may lead to wrong interpretations when analyzing real-world time series: on the one hand, for time series with truly perfect scaling, the spurious value of α1 could lead to wrongly thinking that there exists some specific mechanism acting only at short time scales in the dynamical system. On the other hand, for time series with true different scaling at short and large scales, the incorrect α1 value would not characterize properly the short scale behavior of the dynamical system.  相似文献   

15.
We study both pentapartite GHZ and W-class states in the noninertial frame and explore their entanglement properties by carrying out the negativities including 1-4, 2-3, and 1-1 tangles, the whole entanglement measures such as algebraic and geometric averages π5 and Π5, and von Neumann entropy. We illustrate graphically the difference between the pentapartite GHZ and W-class states. We find that all 1-4, 2-3 tangles and the whole entanglements, which are observer dependent, degrade more quickly as the number of accelerated qubits increases. The entanglements of these quantities still exist even at the infinite acceleration limit. We also notice that all 1-1 tangles of pentapartite GHZ state Nαβ=NαIβ=NαIβI=0 where α,β(A,B,C,D,E), whereas all 1-1 tangles of the W-class state Nαβ,NαIβ and NαIβI are unequal to zero, e.g., Nαβ=0.12111 but NαIβ and NαIβI disappear at r>0.61548 and r>0.38671, respectively. We notice that the entanglement of the pentapartite GHZ and W-class quantum systems decays faster as the number of accelerated particles increases. Moreover, we also illustrate the difference of von Neumann entropy between them and find that the entropy in the pentapartite W-class state is greater than that of GHZ state. The von Neumann entropy in the pentapartite case is more unstable than those of tripartite and tetrapartite subsystems in the noninertial frame.  相似文献   

16.
This paper studies the effect of quantum computers on Bitcoin mining. The shift in computational paradigm towards quantum computation allows the entire search space of the golden nonce to be queried at once by exploiting quantum superpositions and entanglement. Using Grover’s algorithm, a solution can be extracted in time O(2256/t), where t is the target value for the nonce. This is better using a square root over the classical search algorithm that requires O(2256/t) tries. If sufficiently large quantum computers are available for the public, mining activity in the classical sense becomes obsolete, as quantum computers always win. Without considering quantum noise, the size of the quantum computer needs to be 104 qubits.  相似文献   

17.
We study the viable Starobinsky f(R) dark energy model in spatially non-flat FLRW backgrounds, where f(R)=RλRch[1(1+R2/Rch2)1] with Rch and λ representing the characteristic curvature scale and model parameter, respectively. We modify CAMB and CosmoMC packages with the recent observational data to constrain Starobinsky f(R) gravity and the density parameter of curvature ΩK. In particular, we find the model and density parameters to be λ1<0.283 at 68% C.L. and ΩK=0.000990.0042+0.0044 at 95% C.L., respectively. The best χ2 fitting result shows that χf(R)2χΛCDM2, indicating that the viable f(R) gravity model is consistent with ΛCDM when ΩK is set as a free parameter. We also evaluate the values of AIC, BIC and DIC for the best fitting results of f(R) and ΛCDM models in the non-flat universe.  相似文献   

18.
In this work, first, we consider novel parameterized identities for the left and right part of the (p,q)-analogue of Hermite–Hadamard inequality. Second, using these new parameterized identities, we give new parameterized (p,q)-trapezoid and parameterized (p,q)-midpoint type integral inequalities via η-quasiconvex function. By changing values of parameter μ[0,1], some new special cases from the main results are obtained and some known results are recaptured as well. Finally, at the end, an application to special means is given as well. This new research has the potential to establish new boundaries in comparative literature and some well-known implications. From an application perspective, the proposed research on the η-quasiconvex function has interesting results that illustrate the applicability and superiority of the results obtained.  相似文献   

19.
20.
Solving linear systems of equations is one of the most common and basic problems in classical identification systems. Given a coefficient matrix A and a vector b, the ultimate task is to find the solution x such that Ax=b. Based on the technique of the singular value estimation, the paper proposes a modified quantum scheme to obtain the quantum state |x corresponding to the solution of the linear system of equations in O(κ2rpolylog(mn)/ϵ) time for a general m×n dimensional A, which is superior to existing quantum algorithms, where κ is the condition number, r is the rank of matrix A and ϵ is the precision parameter. Meanwhile, we also design a quantum circuit for the homogeneous linear equations and achieve an exponential improvement. The coefficient matrix A in our scheme is a sparsity-independent and non-square matrix, which can be applied in more general situations. Our research provides a universal quantum linear system solver and can enrich the research scope of quantum computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号