首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Cognitive decline in dementia is associated with deficiency of the cholinergic system. In this study, five mono-carbonyl curcumin analogs were synthesized, and on the basis of their promising in vitro anticholinesterase activities, they were further investigated for in vivo neuroprotective and memory enhancing effects in scopolamine-induced amnesia using elevated plus maze (EPM) and novel object recognition (NOR) behavioral mice models. The effects of the synthesized compounds on the cholinergic system involvement in the brain hippocampus and their binding mode in the active site of cholinesterases were also determined. Compound h2 (p < 0.001) and h3 (p < 0.001) significantly inhibited the cholinesterases and reversed the effects of scopolamine by significantly reducing TLT (p < 0.001) in EPM, while (p < 0.001) increased the time exploring the novel object. The % discrimination index (DI) was significantly increased (p < 0.001) in the novel object recognition test. The mechanism of cholinesterase inhibition was further validated through molecular docking study using MOE software. The results obtained from the in vitro, in vivo and ex vivo studies showed that the synthesized curcumin analogs exhibited significantly higher memory-enhancing potential, and h3 could be an effective neuroprotective agent. However, more study is suggested to explore its exact mechanism of action.  相似文献   

2.
Distiller’s grain is rich in natural active ingredients and can be used as an excellent antioxidant feed for goats. The current study aimed to assess the feeding value of four different types of distiller’s grains with an in vitro gas production trial. The chemical composition, total phenols, total anthocyanins, dry matter degradability, methane, hydrogen, and rumen fermentation parameters were evaluated. The results indicated that red distiller’s grain and glutinous rice distiller’s grain had higher (p < 0.05) levels of crude protein than the other two types. There were significantly (p < 0.05) higher concentrations of dry matter, ether extract, hemicellulose, and total carbohydrate in corn distiller’s grain than in the other three types of distiller’s grain. In addition, red distiller’s grain showed a higher (p < 0.05) gas production rate constant (c) and ruminal outflow rate, as well as higher (p < 0.05) concentrations of total phenol, total anthocyanins and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, than the other three types of distiller’s grains. In contrast, red distiller’s grain displayed the lowest (p < 0.05) immediately soluble fraction (a) and half the time of maximum gas production relative to the other samples. In particular, the levels of methane (%) in white distiller’s grain and glutinous rice distiller’s grain were greater (p < 0.05) than that in red distiller’s grain. Moreover, the ammonia nitrogen content in red distiller’s grain was greater (p < 0.05) than that in white distiller’s grain and corn distiller’s grain. In contrast, red distiller’s grain exhibited a lower (p < 0.05) level of ruminal fluid acetic acid relative to that found in white distiller’s grain and corn distiller’s grain. Taken together, the results showed that red distiller’s grain and glutinous rice distiller’s grain could be used as protein feed, red distiller’s grain had higher levels of total phenols and total anthocyanins and a high DPPH scavenging activity; corn distiller’s grain might be considered as an alternative energy source feed, and white distiller’s grain exhibited higher total gas production.  相似文献   

3.
Norway spruce (Picea abies (L.) H. Karst.) is one of the most important commercial tree species distributed naturally in the Boreal and subalpine forest zone of Europe. All parts of spruce trees, including needles, accumulate essential oils with a variety of chemical properties and ecological functions, such as modulating plant–insect communication. Annual needle samples from 15 trees (five from each of three habitats) of 15–17 years old were assayed for essential oils and their major compounds, including α-pinene, β-pinene, (1S)-(−)-α-pinene, and (1R)-(+)-α-pinene across a growing season. Results showed strong positive correlation between percentages of α- and β-pinene isomers (r = 0.69, p < 0.05) and between pinene isomers and essential oils: α-pinene correlated with essential oil stronger (r = 0.62, p < 0.05) than β-pinene (r = 0.33, p < 0.05). Correlation analyses performed with some weather conditions, including average monthly temperature, growing sum of effective temperatures over 5 °C, duration of sunshine, accumulated precipitation, relative humidity, and pressure, showed that temperature is the most important weather condition related to pinene dynamics: negative correlations of moderate strength were established between percentages of α- and β- pinenes and average monthly temperatures (r = −0.36, p < 0.01, n = 75 and r = −0.33, p < 0.01, n = 75, respectively). Out of pinene enantiomers, only (1S)-(−)-α-pinene showed some negative correlation with monthly temperature (r = −0.26, p < 0.05, n = 75). Different patterns of essential oil and pinene dynamics during growing season within separate habitats suggested that some genetic variables of Picea abies might be involved.  相似文献   

4.
Here, we identified the mechanisms of action of antidiabetic activity of novel compounds isolated from Cassia fistula stem bark in STZ-diabetic animals. Novel triterpenoid compounds (C1, C2 and C3) were treated to STZ-administered diabetic animals at a concentration of 20mg/kg body weight orally for 60 days to assess their effects on plasma glucose, plasma insulin/C-peptide, serum lipid markers and the enzymes of carbohydrate metabolism, glucose oxidation and insulin signaling molecules. Oral administration of novel triterpenoid compounds to STZ-diabetic animals significantly decreased (p < 0.05) the plasma glucose concentration on the 7th, 15th, 30th, 45th and 60th daysin a duration-dependent manner (p < 0.05). Plasma insulin (p < 0.0001)/C-peptide (p < 0.0006), tissue glycogen (p < 0.0034), glycogen phosphorylase (p < 0.005), glucose 6-phosphatase (p < 0.0001) and lipid markers were significantly increased (p < 0.0001) in diabetic rats, whereas glucokinase (p < 0.0047), glycogen synthase (p < 0.003), glucose oxidation (p < 0.001), GLUT4 mRNA (p < 0.0463), GLUT4 protein (p < 0.0475) and the insulin-signaling molecules IR mRNA (p < 0.0195), IR protein (p < 0.0001), IRS-1 mRNA (p < 0.0478), p-IRS-1Tyr612 (p < 0.0185), Akt mRNA (p < 0.0394), p–AktSer473 (p < 0.0162), GLUT4 mRNA (p < 0.0463) and GLUT4 (p < 0.0475) were decreased in the gastrocnemius muscle. In silico analysis of C1–C3 with IRK and PPAR-γ protein coincided with in vivo findings. C1–C3 possessed promising antidiabetic activity by regulating insulin signaling mechanisms and carbohydrate metabolic enzymes.  相似文献   

5.
The present study describes investigation of the effects of the bark resin extract of Garcinia nigrolineata (Clusiaceae) on the cognitive function and the induction of oxidative stress in both frontal cortex and hippocampus by unpredictable chronic mild stress (UCMS). By using behavioral mouse models, i.e., the Y-maze test, the Novel Object Recognition Test (NORT), and the Morris Water Maze Test (MWMT), it was found that the negative impact of repeated mild stress-induced learning and memory deficit through brain oxidative stress in the UCMS mice was reversed by treatment with the bark resin extract G. nigrolineata. Moreover, the prenylated xanthones viz. cowagarcinone C, cowaxanthone, α-mangostin, cowaxanthone B, cowanin, fuscaxanthone A, fuscaxanthone B, xanthochymusxanthones A, 7-O-methylgarcinone E, and cowagarcinone A, isolated from the bark resin of G. nigrolineata, were assayed for their inhibitory activities against β-amyloid (Aβ) aggregation and monoamine oxidase enzymes (MAOs).  相似文献   

6.
Natural flavonoids, in addition to some of their synthetic derivatives, are recognized for their remarkable medicinal properties. The present study was designed to investigate the in vitro antioxidant and in vivo antistress effect of synthetic flavonoids (flavones and flavonols) in mice, where stress was induced by injecting acetic acid and physically through swimming immobilization. Among the synthesized flavones (F1–F6) and flavonols (OF1–OF6), the mono para substituted methoxy containing F3 and OF3 exhibited maximum scavenging potential against DPPH (2,2-diphenyl-1-picrylhydrazyl) with IC50 of 31.46 ± 1.46 μg/mL and 25.54 ± 1.21 μg/mL, respectively. Minimum antioxidant potential was observed for F6 and OF6 with IC50 values of 174.24 ± 2.71 μg/mL and 122.33 ± 1.98 μg/mL, respectively, in comparison with tocopherol. The ABTS scavenging activity of all the synthesized flavones and flavonols were significantly higher than observed with DPPH assay, indicating their potency as good antioxidants and the effectiveness of ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) assay in evaluating antioxidant potentials of chemical substances. The flavonoids-treated animals showed a significant (* p < 0.05, ** p < 0.01 and *** p < 0.001, n = 8) reduction in the number of writhes and an increase in swimming endurance time. Stressful conditions changed plasma glucose, cholesterol and triglyceride levels, which were used as markers when evaluating stress in animal models. The level of these markers was nearly brought to normal when pre-treated with flavones and flavonols (10 mg/kg) for fifteen days in experimental animals. These compounds also considerably reduced the levels of lipid peroxidation (TBARS: Thiobarbituric acid reactive substances), which was significant (* p < 0.05, ** p < 0.01 and *** p < 0.001, n = 8) compared to the control group. A significant rise in the level of catalase and SOD (super oxide dismutase) was also observed in the treated groups. Diazepam (2 mg/kg) was used as the standard drug. Additionally, the flavonoids markedly altered the weight of the adrenal glands, spleen and brain in stress-induced mice. The findings of the study suggest that these flavonoids could be used as a remedy for stress and are capable of ameliorating diverse physiological and biochemical alterations associated with stressful conditions. However, further experiments are needed to confirm the observed potentials in other animal models, especially in those with a closer resemblance to humans. Toxicological evaluations are also equally important.  相似文献   

7.
Exposure to particulate matter (PM) is related to various respiratory diseases, and this affects the respiratory immune system. Alveolar macrophages (AMs), which are defenders against pathogens, play a key role in respiratory inflammation through cytokine production and cellular interactions. Coconut oil demonstrates antioxidant and anti-inflammatory properties, and it is consumed worldwide for improved health. However, reports on the protective effects of coconut oil on the PM-induced respiratory immune system, especially in AMs, are limited. In this study, we generated artificial PM (APM) with a diameter approximately of 30 nm by controlling the temperature, and compared its cytotoxicity with diesel exhaust particles (DEP). We also investigated the antioxidant and anti-inflammatory effects of coconut oil in APM– and DEP–stimulated AMs, and the underlying molecular mechanisms. Our results showed that APM and DEP had high cytotoxicity in a dose-dependent manner in AMs. In particular, APM or DEP at 100 μg/mL significantly decreased cell viability (p < 0.05) and significantly increased oxidative stress markers such as reactive oxygen species (p < 0.01); the GSSH/GSH ratio (p < 0.01); and cytokine production, such as tumor necrosis factor-α (p < 0.001), interleukin (IL)-1β (p < 0.001), and IL-6 (p < 0.001). The expression of the genes for chemokine (C-X-C motif) ligand-1 (p < 0.05) and monocyte chemoattractant protein-1 (p < 0.001); and the proteins toll-like receptor (TLR) 4 (p < 0.01), mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (p < 0.001), p38 (p < 0.001); and extracellular receptor-activated kinase (p < 0.001), were also upregulated by PM. These parameters were reversed upon treatment with coconut oil in APM– or DEP–stimulated AMs. In conclusion, coconut oil can reduce APM– or DEP–induced inflammation by regulating the TLR4/MAPK pathway in AMs, and it may protect against adverse respiratory effects caused by PM exposure.Exposure to particulate matter (PM) is related to various respiratory diseases, and this affects the respiratory immune system. Alveolar macrophages (AMs), which are defenders against pathogens, play a key role in respiratory inflammation through cytokine production and cellular interactions. Coconut oil demonstrates antioxidant and anti-inflammatory properties, and it is consumed worldwide for improved health. However, reports on the protective effects of coconut oil on the PM-induced respiratory immune system, especially in AMs, are limited. In this study, we generated artificial PM (APM) with a diameter approximately of 30 nm by controlling the temperature, and compared its cytotoxicity with diesel exhaust particles (DEP). We also investigated the antioxidant and anti-inflammatory effects of coconut oil in APM– and DEP–stimulated AMs, and the underlying molecular mechanisms. Our results showed that APM and DEP had high cytotoxicity in a dose-dependent manner in AMs. In particular, APM or DEP at 100 μg/mL significantly decreased cell viability (p < 0.05) and significantly increased oxidative stress markers such as reactive oxygen species (p < 0.01); the GSSH/GSH ratio (p < 0.01); and cytokine production, such as tumor necrosis factor-α (p < 0.001), interleukin (IL)-1β (p < 0.001), and IL-6 (p < 0.001). The expression of the genes for chemokine (C-X-C motif) ligand-1 (p < 0.05) and monocyte chemoattractant protein-1 (p < 0.001); and the proteins toll-like receptor (TLR) 4 (p < 0.01), mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (p < 0.001), p38 (p < 0.001); and extracellular receptor-activated kinase (p < 0.001), were also upregulated by PM. These parameters were reversed upon treatment with coconut oil in APM– or DEP–stimulated AMs. In conclusion, coconut oil can reduce APM– or DEP–induced inflammation by regulating the TLR4/MAPK pathway in AMs, and it may protect against adverse respiratory effects caused by PM exposure.  相似文献   

8.
The immune system plays an important role in maintaining body homeostasis. Recent studies on the immune-enhancing effects of ginseng saponins have revealed more diverse mechanisms of action. Maillard reaction that occurs during the manufacturing processes of red ginseng produces a large amount of Amadori rearrangement compounds (ARCs), such as arginyl-fructose (AF). The antioxidant and anti-hyperglycemic effects of AF have been reported. However, the possible immune enhancing effects of non-saponin ginseng compounds, such as AF, have not been investigated. In this study the effects of AF and AF-enriched natural product (Ginofos, GF) on proliferation of normal mouse splenocytes were evaluated in vitro and male BALB/c mice models. The proliferation of splenocytes treated with mitogens (concanavalin A, lipopolysaccharide) were further increased by addition of AF (p < 0.01) or GF (p < 0.01), in a dose dependent manner. After the 10 days of oral administration of compounds, changes in weights of spleen and thymus, serum immunoglobulin, and expression of cytokines were measured as biomarkers of immune-enhancing potential in male BALB/c mice model. The AF or GF treated groups had higher weights of the thymus (0.94 ± 0.25 and 0.86 ± 0.18, p < 0.05, respectively) than that of cyclophosphamide treated group (0.59 ± 0.18). This result indicates that AF or AF-enriched extract (GF) increased humoral immunity against CY-induced immunosuppression. In addition, immunoglobulin contents and expression of cytokines including IgM (p < 0.01), IgG (p < 0.05), IL-2 (p < 0.01), IL-4 (p < 0.01), IL-6 (p < 0.01), and IFN-γ (p < 0.05) were also significantly increased by supplementation of AF or GF. These results indicate that AF has immune enhancing effects by activation of adaptive immunity via increase of expression of immunoglobulins and cytokines such as IgM, IgG, IL-2, IL-4, IL-6 and thereby proliferating the weight of thymus. Our findings provide a pharmacological rationale for AF-enriched natural products such as ginseng and red ginseng that can possibly have immune-enhancement potential and should be further evaluated.  相似文献   

9.
In order to discover new 31P NMR markers for probing subtle pH changes (<0.2 pH unit) in biological environments, fifteen new conformationally constrained or sterically hindered α-aminophosphonates derived from diethyl(2-methylpyrrolidin-2-yl)phosphonate were synthesized and tested for their pH reporting and cytotoxic properties in vitro. All compounds showed near-neutral pKas (ranging 6.28–6.97), chemical shifts not overlapping those of phosphorus metabolites, and spectroscopic sensitivities (i.e., chemical shifts variation Δδab between the acidic and basic forms) ranging from 9.2–10.7 ppm, being fourfold larger than conventional endogenous markers such as inorganic phosphate. X-ray crystallographic studies combined with predictive empirical relationships and ab initio calculations addressed the inductive and stereochemical effects of substituents linked to the protonated amine function. Satisfactory correlations were established between pKas and both the 2D structure and pyramidalization at phosphorus, showing that steric crowding around the phosphorus is crucial for modulating Δδab. Finally, the hit 31P NMR pH probe 1b bearing an unsubstituted 1,3,2-dioxaphosphorinane ring, which is moderately lipophilic, nontoxic on A549 and NHLF cells, and showing pKa = 6.45 with Δδab = 10.64 ppm, allowed the first clear-cut evidence of trans-sarcolemmal pH gradients in normoxic Dictyostelium discoideum cells with an accuracy of <0.05 pH units.  相似文献   

10.
Background: This study aimed to develop an ultrathin nanofibrous membrane able to, firstly, mimic the natural fibrous architecture of human Bruch’s membrane (BM) and, secondly, promote survival of retinal pigment epithelial (RPE) cells after surface functionalization of fibrous membranes. Methods: Integrin-binding peptides (IBPs) that specifically interact with appropriate adhesion receptors on RPEs were immobilized on Bruch’s-mimetic membranes to promote coverage of RPEs. Surface morphologies, Fourier-transform infrared spectroscopy spectra, contact angle analysis, Alamar Blue assay, live/dead assay, immunofluorescence staining, and scanning electron microscopy were used to evaluate the outcome. Results: Results showed that coated membranes maintained the original morphology of nanofibers. After coating with IBPs, the water contact angle of the membrane surfaces varied from 92.38 ± 0.67 degrees to 20.16 ± 0.81 degrees. RPE cells seeded on IBP-coated membranes showed the highest viability at all time points (Day 1, p < 0.05; Day 3, p < 0.01; Days 7 and 14, p < 0.001). The proliferation rate of RPE cells on uncoated poly(ε-caprolactone) (PCL) membranes was significantly lower than that of IBP-coated membranes (p < 0.001). SEM images showed a well-organized hexa/polygonal monolayer of RPE cells on IBP-coated membranes. RPE cells proliferated rapidly, contacted, and became confluent. RPE cells formed a tight adhesion with nanofibers under high-magnification SEM. Our findings confirmed that the IBP-coated PCL membrane improved the attachment, proliferation, and viability of RPE cells. In addition, in this study, we used serum-free culture for RPE cells and short IBPs without immunogenicity to prevent graft rejection and immunogenicity during transplantation. Conclusions: These results indicated that the biomimic BM-IBP-RPE nanofibrous graft might be a new, practicable approach to increase the success rate of RPE cell transplantation.  相似文献   

11.
The crude ethanol extract of the whole plant of Alternanthera philoxeroides (Mart.) Griseb was investigated for its potential as antidementia, induced by estrogen deprivation, based on in vitro antioxidant activity, β-amyloid aggregation inhibition and cholinesterase inhibitory activity, as well as in vivo Morris water maze task (MWMT), novel object recognition task (NORT), and Y-maze task. To better understand the effect of the extract, oxidative stress-induced brain membrane damage through lipid peroxidation in the whole brain was also investigated. Additionally, expressions of neuroinflammatory cytokines (IL-1β, IL-6 and TNF-α) and estrogen receptor-mediated facilitation genes such as PI3K and AKT mRNA in the hippocampus and frontal cortex were also evaluated. These effects were confirmed by the determination of its serum metabolites by NMR metabolomic analysis. Both the crude extract of A. philoxeroides and its flavone constituents were found to inhibit β-amyloid (Aβ) aggregation.  相似文献   

12.
Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.  相似文献   

13.
The current study reports the fabrication of co-combination gel using Pregabalin and Withania coagulans fruit extract to validate its effectiveness for neuropathic pain in chronic constriction injury (CCI) rat models. Three topical gels were prepared using Carbopol 934 through a pseudo-ternary phase diagram incorporating the Pregabalin (2.5%), Withania coagulans extract (2%), and co-combination of both Pregabalin (2.5%) and Withania coagulans extract (2%). Gels were characterized. FTIR showed a successful polymeric network of the gel without any interaction. The drug distribution at the molecular level was confirmed by XRD. The AFM images topographically indicated the rough surface of gels with a size range from 0.25 to 330 nm. DSC showed the disappearance of sharp peaks of the drug and extract, showing successful incorporation into the polymeric network of gels. The in vitro drug release of co-combination gel was 73% over 48 h. The mechanism of drug release by combination gel was Higuchi+ fickian with values of n (0.282) and R2 (0.947). An in vivo study for pain assessment via four methods: (i) heat hyperalgesia, (ii) cold allodynia, (iii) mechano-hyperalgesia, and (iv) dynamic mechano-allodynia, confirmed that topical treatment with co-combination gel reduced the pain significantly as indicated by the p value: R1 (p < 0.001), R2 (p < 0.001), R3 (p < 0.015), and R4 (p < 0.0344). The significance order was R2 (****) > R1 (***) > R3 (**) > R4 (*) > R5 (ns).  相似文献   

14.
In this study, the protein bioaccessibility of soymilk gels produced by the addition of glu-cono-δ-lactone (GDL) and fermentation with lactic acid bacteria (LAB) was examined using an in vitro gastrointestinal simulated digestion model. The in vitro protein digestibility, soluble protein content, free amino acids contents, degree of hydrolysis, electrophoretic patterns, and peptide content were measured. The results suggested that acid-induced soymilk gel generated by GDL (SG) showed considerably reduced in vitro protein digestibility of 75.33 ± 1.00% compared to the soymilk gel induced by LAB (SL) of 80.57 ± 1.53% (p < 0.05). During the gastric digestion stage, dramatically higher (p < 0.05) soluble protein contents were observed in the SG (4.79–5.05 mg/mL) than that of SL (4.31–4.35 mg/mL). However, during the later intestinal digestion phase, the results were the opposite. At the end of the gastrointestinal digestion phase, the content of small peptides was not significantly different (p > 0.05) between the SL (2.15 ± 0.03 mg/mL) and SG (2.17 ± 0.01 mg/mL), but SL showed higher content of free amino acids (20.637 g/L) than that of SG (19.851 g/L). In general, soymilk gel induced by LAB had a higher protein bioaccessibility than the soymilk gel coagulated by GDL.  相似文献   

15.
In this paper, the syntheses of twelve asymmetric curcumin analogs using Pabon’s method are reported. Generally, the previously reported yields of asymmetric curcuminoids, such as 9a (53%), 9c (38%), and 9k (38%), have been moderate or low. Herein, we propose that the low yields were due to the presence of water and n-BuNH2 in the reaction media. To prove this formulated hypothesis, we have demonstrated that the yields can be improved by adding molecular sieves (MS) (4 Å) to the reaction mixture, thus reducing the interference of water. Therefore, improved yields (41–76%) were obtained, except for 9b (36.7%), 9g (34%), and 9l (39.5%). Furthermore, compounds 9b, 9d, 9e, 9f, 9g, 9h, 9i, 9j, and 9l are reported herein for the first time. The structures of these synthetic compounds were determined by spectroscopic and mass spectrometry analyses. The free radical scavenging ability of these synthetic asymmetric curcuminoids was evaluated and compared to that of the positive control butylated hydroxytoluene (BHT). Among the synthesized asymmetric curcuminoids, compounds 9a (IC50 = 37.57 ± 0.89 μM) and 9e (IC50 = 37.17 ± 1.76 μM) possessed effective 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities, and compounds 9h (IC50 = 11.36 ± 0.65 μM) and 9i (IC50 = 10.91 ± 0.77 μM) displayed potent 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radical scavenging abilities comparable to that of curcumin (IC50 = 10.14 ± 1.04 μM). Furthermore, all the synthetic asymmetric curcuminoids were more active than BHT.  相似文献   

16.
Present research was planned to assess the in vitro and in vivo anti-arthritic potential of Caralluma tuberculata N. E. Brown. methanolic (CTME) and aqueous (CTAQ) extracts. Chemical characterization was done by high-performance liquid chromatography and gas chromatography–mass spectrometry analysis. The Complete Freund’s Adjuvant (CFA) was injected in left hind paw of rat at day 1 and dosing at 150, 300 and 600 mg/kg was started on the 8th day via oral gavage in all groups except normal and disease control rats (which were given distilled water), whereas methotrexate (intraperitoneal; 1 mg/kg/mL) was administered to standard control. The CTME and CTAQ exerted significant (p < 0.01–0.0001) in vitro anti-arthritic action. Both extracts notably reduced paw edema, and restored weight loss, immune organs weight, arthritic score, RBCs, ESR, platelet count, rheumatoid factor (RF), C-reactive protein, and WBCs in treated rats. The plant extracts showed significant (p < 0.05–0.0001) downregulation of tumor necrosis factor-α, Interleukin-6, -1β, NF-κB, and cyclooxygenase-2, while notably upregulated IL-4, IL-10, I-κBα in contrast to disease control rats. The plant extracts noticeably (p < 0.001–0.0001) restored the superoxide dismutase and catalase activities and MDA levels in treated rats. Both extracts exhibited significant anti-arthritic potential. The promising potential was exhibited by both extracts probably due to phenolic, and flavonoids compounds.  相似文献   

17.
Recently, the direct thrombin (thr) inhibitor dabigatran has proven to be beneficial in animal models of Alzheimer’s disease (AD). Aiming at discovering novel multimodal agents addressing thr and AD-related targets, a selection of previously and newly synthesized potent thr and factor Xa (fXa) inhibitors were virtually screened by the Multi-fingerprint Similarity Searching aLgorithm (MuSSeL) web server. The N-phenyl-1-(pyridin-4-yl)piperidine-4-carboxamide derivative 1, which has already been experimentally shown to inhibit thr with a Ki value of 6 nM, has been flagged by a new, upcoming release of MuSSeL as a binder of cholinesterase (ChE) isoforms (acetyl- and butyrylcholinesterase, AChE and BChE), as well as thr, fXa, and other enzymes and receptors. Interestingly, the inhibition potency of 1 was predicted by the MuSSeL platform to fall within the low-to-submicromolar range and this was confirmed by experimental Ki values, which were found equal to 0.058 and 6.95 μM for eeAChE and eqBChE, respectively. Thirty analogs of 1 were then assayed as inhibitors of thr, fXa, AChE, and BChE to increase our knowledge of their structure-activity relationships, while the molecular determinants responsible for the multiple activities towards the target enzymes were rationally investigated by molecular cross-docking screening.  相似文献   

18.
Background: So far, no articles have discussed the hypolipidemic effect of wheat germ protein in in vivo experiments. Objective: In this study, we investigated the effects of wheat germ protein (WGP, 300 mg/kg/day) and wheat germ (WG, 300 mg/kg/day) on cholesterol metabolism, antioxidant activities, and serum and hepatic lipids in rats fed a high-fat diet through gavage. Methodology: We used 4-week-old male Wistar 20 rats in our animal experiment. Biochemical indicators of fecal, serum and liver were tested by kits or chemical methods. We also conducted the cholesterol micellar solubility experiment in vitro. Results: After 28 days of treatment, our results showed that WGP significantly reduced the serum levels of total cholesterol (p < 0.05) and nonhigh-density lipoprotein cholesterol (p < 0.05), improved the enzymatic activities of cholesterol 7-α hydroxylase (p < 0.01) and low-density lipoprotein receptor (p < 0.01) and increased bile acid excretion in feces (p < 0.05). Conclusion: WG did not significantly increase bile acid excretion in feces or decrease serum levels of total cholesterol. Moreover, WGP and WG both presented significant antioxidant activity in vivo (p < 0.05) and caused a significant reduction in cholesterol micellar solubility in vitro (p < 0.001). Therefore, WGP may effectively prevent hyperlipidemia and its complications as WGP treatment enhanced antioxidant activity, decreased the concentration of serum lipids and improved the activity of enzymes involved in cholesterol metabolism.  相似文献   

19.
Polysaccharides from Flos Sophorae Immaturus (FSI) are one of its pharmacological compounds that can perform effective activities. Aiming to extract the most effective polysaccharides against hepatocellular carcinoma (HCC), the polysaccharides were separated from FSI through ultrasonic microwave extraction, and the first comparison was carried out on the characterization of the structure and its cytotoxic properties on HCC SMMC 7721 cells of undeproteinized purified polysaccharides (PFSI-1) and papain-deproteinized polysaccharides (PFSI-2) from FSI. The findings indicated that PFSI-1 and PFSI-2 had characteristic absorption peaks of polysaccharides; PFSI-1 contained three monosaccharides and PFSI-2 contained ten; and SEM, AFM, and NMR were consistent with the verification of IR polysaccharide characteristics, suggesting probable additional latent activities. The pharmacotoxic effects of both PFSI-1 and PFSI-2 on SMMC 7721 cells (p < 0.05), attenuated the migration ability of SMMC 7721 cells (p < 0.05) and promoted apoptosis (p < 0.05), with an increase in G0/G1-phase cells and decrease in S-phase cells in the PFSI-1 as well as a decrease in G0/G1-phase cells, increase in S-phase cells, and decrease in apoptosis in the PFSI-2 (p < 0.05). The significant cytotoxic effect of PFSI-2 on SMMC 7721 cells (p < 0.05) and its protective effect on human hepatic L02 cells (HL-7702) at low concentrations (p > 0.05) could indicate its potential as a new drug for the treatment of HCC.  相似文献   

20.
P21-activated kinases (PAKs) are serine/threonine protein kinases that contribute to several cellular processes. Here, we aimed to determine the prognostic value of PAK1 and its correlation with the clinicopathological characteristics and five-year survival rates in patients with non-small cell lung cancer (NSCLC). We evaluated PAK1 mRNA and protein expression in NSCLC cells and resected tumor specimens, as well as in healthy human bronchial epithelial cells and adjacent healthy lung tissues, respectively, for effective comparison. Immunohistochemical tissue microarray analysis of 201 NSCLC specimens showed the correlation of PAK1 expression with clinicopathological characteristics. The mRNA and protein expression of PAK1 were 2.9- and 4.3-fold higher in six of seven NSCLC cell types and human tumors (both, p < 0.001) than in healthy human bronchial epithelial BEAS-2B cells and adjacent healthy lung tissues, respectively. Decreased survival was significantly associated with PAK1 overexpression in the entire cohort (χ2 = 8.48, p = 0.0036), men (χ2 = 17.1, p < 0.0001), and current and former smokers (χ2 = 19.2, p < 0.0001). Notably, epidermal growth factor receptor (EGFR) mutation-positive lung cancer patients with high PAK1 expression showed higher mortality rates than those with low PAK1 expression (91.3% vs. 62.5%, p = 0.02). Therefore, PAK1 overexpression could serve as a molecular target for the treatment of EGFR mutation-positive lung cancer, especially among male patients and current/former smokers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号