首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%), and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 μs and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 μm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.  相似文献   

2.
A sulfanyl porphyrazine derivative with peripheral phthalimide moieties was metallated with cobalt(II) and iron(II) metal ions. The purity of the macrocycles was confirmed by HPLC, and subsequently, compounds were characterized using various analytical methods (ES-TOF, MALDI-TOF, UV–VIS, and NMR spectroscopy). To obtain hybrid electroactive electrode materials, novel porphyrazines were combined with multiwalled carbon nanotubes. The electrocatalytic effect derived from cobalt(II) and iron(II) cations was evaluated. As a result, a significant decrease in the overpotential was observed compared with that obtained with bare glassy carbon (GC) or glassy carbon electrode/carbon nanotubes (GC/MWCNTs), which allowed for sensitive determination of hydrogen peroxide in neutral conditions (pH 7.4). The prepared sensor enables a linear response to H2O2 concentrations of 1–90 µM. A low detection limit of 0.18 μM and a high sensitivity of 640 μA mM−1 cm−2 were obtained. These results indicate that the obtained sensors could potentially be applied in biomedical and environmental fields.  相似文献   

3.
Three-dimensional vertically aligned graphene (3DVAG) was prepared by a unidirectional freezing method, and its electrochemical performances were evaluated as electrode materials for zinc−ion hybrid supercapacitors (ZHSCs). The prepared 3DVAG has a vertically ordered channel structure with a diameter of about 20−30 μm and a length stretching about hundreds of microns. Compared with the random structure of reduced graphene oxide (3DrGO), the vertical structure of 3DVAG in a three−electrode system showed higher specific capacitance, faster ion diffusion, and better rate performance. The specific capacitance of 3DVAG reached 66.6 F·g−1 and the rate performance reached 92.2%. The constructed 3DVAG zinc−ion hybrid supercapacitor also showed excellent electrochemical performance. It showed good capacitance retention up to 94.6% after 3000 cycles at the current density of 2 A·g−1.  相似文献   

4.
In this paper, a Ni and diamond-like carbon (DLC)-modified TiO2 nanotube composite electrode was prepared as a glucose sensor using a combination of an anodizing process, electrodeposition, and magnetron sputtering. The composition and morphology of the electrodes were analyzed by a scanning electron microscope and energy dispersive X-ray detector, and the electrochemical glucose oxidation performance of the electrodes was evaluated by cyclic voltammetry and chronoamperometry. The results show that the Ni-coated DLC-modified TiO2 electrode has better electrocatalytic oxidation performance for glucose than pure TiO2 and electrodeposited Ni on a TiO2 electrode, which can be attributed to the synergistic effect between Ni and carbon. The glucose test results indicate a good linear correlation in a glucose concentration range of 0.99–22.97 mM, with a sensitivity of 1063.78 μA·mM−1·cm−2 and a detection limit of 0.53 μM. The results suggest that the obtained Ni-DLC/TiO2 electrode has great application potential in the field of non-enzymatic glucose sensors.  相似文献   

5.
Diabetes mellitus is a major health problem globally. The management of carbohydrate digestion provides an alternative treatment. Flavonoids constitute the largest group of polyphenolic compounds, produced by plants widely consumed as food and/or used for therapeutic purposes. As such, isoxazoles have attracted the attention of medicinal chemists by dint of their considerable bioactivity. Thus, the main goal of this work was to discover new hybrid molecules with properties of both flavonoids and isoxazoles in order to control carbohydrate digestion. Moreover, the trifluoromethyl group is a key entity in drug development, due to its strong lipophilicity and metabolic stability. Therefore, the present work describes the condensation of a previously synthesized trifluoromethylated flavonol with different aryl nitrile oxides, affording 13 hybrid molecules indicated as trifluoromethylated flavonoid-based isoxazoles. The structures of the obtained compounds were deduced from by 1H NMR, 13C NMR, and HRMS analysis. The 15 newly synthesized compounds inhibited the activity of α-amylase with an efficacy ranging from 64.5 ± 0.7% to 94.7 ± 1.2% at a concentration of 50 μM, and with IC50 values of 12.6 ± 0.2 μM–27.6 ± 1.1 μM. The most effective compounds in terms of efficacy and potency were 3b, 3h, 3j, and 3m. Among the new trifluoromethylated flavonoid-based isoxazoles, the compound 3b was the most effective inhibitor of α-amylase activity (PI = 94.7 ± 1.2% at 50 μM), with a potency (IC50 = 12.6 ± 0.2 μM) similar to that of the positive control acarbose (IC50 = 12.4 ± 0.1 μM). The study of the structure–activity relationship based on the molecular docking analysis showed a low binding energy, a correct mode of interaction in the active pocket of the target enzyme, and an ability to interact with the key residues of glycosidic cleavage (GLU-230 and ASP-206), explaining the inhibitory effects of α-amylase established by several derivatives.  相似文献   

6.
To build a portable and sensitive method for monitoring the concentration of the flavonoid rutin, a new electrochemical sensing procedure was established. By using nitrogen-doped carbonized polymer dots (N-CPDs) anchoring few-layer black phosphorene (N-CPDs@FLBP) 0D-2D heterostructure and gold nanoparticles (AuNPs) as the modifiers, a carbon ionic liquid electrode and a screen-printed electrode (SPE) were used as the substrate electrodes to construct a conventional electrochemical sensor and a portable wireless intelligent electrochemical sensor, respectively. The electrochemical behavior of rutin on the fabricated electrochemical sensors was explored in detail, with the analytical performances investigated. Due to the electroactive groups of rutin, and the specific π-π stacking and cation–π interaction between the nanocomposite with rutin, the electrochemical responses of rutin were greatly enhanced on the AuNPs/N-CPDs@FLBP-modified electrodes. Under the optimal conditions, ultra-sensitive detection of rutin could be realized on AuNPs/N-CPDs@FLBP/SPE with the detection range of 1.0 nmol L−1 to 220.0 μmol L−1 and the detection limit of 0.33 nmol L−1 (S/N = 3). Finally, two kinds of sensors were applied to test the real samples with satisfactory results.  相似文献   

7.
Rutin, a natural flavonol glycoside, is widely present in plants and foods, such as black tea and wheat tea. The antioxidant and anti-inflammatory effects of flavonoids are well known. In this study, a new electrochemical rutin sensor was developed using multiwalled carbon nanotubes/aluminum-based metal–organic frameworks (MWCNT/CAU-1) (CAU−1, a type of Al-MOF) as the electrode modification material. The suspension of multiwalled carbon tubes was dropped on the surface of the GCE electrode to make MWCNT/GCEs, and CAU−1 was then attached to the electrode surface by electrodeposition. MWCNTs and CAU−1 were characterized using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Due to the synergistic effect of CAU−1 and MWCNT-COOH, the prepared sensor showed an ultrasensitive electrochemical response to rutin. Under optimized conditions, the sensor showed a linear relationship between 1.0 × 10−9~3.0 × 10−6 M with a detection limit of 6.7 × 10−10 M (S/N = 3). The sensor also showed satisfactory stability and accuracy in the detection of real samples.  相似文献   

8.
This study reports a facile approach for constructing low-cost and remarkable electroactivity iron vanadate (Fe-V-O) semiconductor material to be used as a photoelectrochemical sensor for dopamine detection. The structure and morphology of the iron vanadate obtained by the Successive Ionic Adsorption and Reaction process were critically characterized, and the photoelectrochemical characterization showed a high photoelectroactivity of the photoanode in visible light irradiation. Under best conditions, dopamine was detected by chronoamperometry at +0.35 V vs. Ag/AgCl, achieving two linear response ranges (between 1.21 and 30.32 μmol L−1, and between 30.32 and 72.77 μmol L−1). The limits of detection and quantification were 0.34 and 1.12 μmol L−1, respectively. Besides, the accuracy of the proposed electrode was assessed by determining dopamine in artificial cerebrospinal fluid, obtaining recovery values ranging from 98.7 to 102.4%. The selectivity was also evaluated by dopamine detection against several interferent species, demonstrating good precision and promising application for the proposed method. Furthermore, DFT-based electronic structure calculations were also conducted to help the interpretation. The dominant dopamine species were determined according to the experimental conditions, and their interaction with the iron vanadate photoanode was proposed. The improved light-induced DOP detection was likewise evaluated regarding the charge transfer process.  相似文献   

9.
(−)-Epigallocatechin gallate (EGCG), the chief dietary constituent in green tea (Camellia sinensis), is relatively unstable under oxidative conditions. This study evaluated the use of non-thermal dielectric barrier discharge (DBD) plasma to improve the anti-digestive enzyme capacities of EGCG oxidation products. Pure EGCG was dissolved in an aqueous solution and irradiated with DBD plasma for 20, 40, and 60 min. The reactant, irradiated for 60 min, exhibited improved inhibitory properties against α-glucosidase and α-amylase compared with the parent EGCG. The chemical structures of these oxidation products 1–3 from the EGCG, irradiated with the plasma for 60 min, were characterized using spectroscopic methods. Among the oxidation products, EGCG quinone dimer A (1) showed the most potent inhibitory effects toward α-glucosidase and α-amylase with IC50 values of 15.9 ± 0.3 and 18.7 ± 0.3 μM, respectively. These values were significantly higher than that of the positive control, acarbose. Compound 1, which was the most active, was the most abundant in the plasma-irradiated reactant for 60 min according to quantitative high-performance liquid chromatography analysis. These results suggest that the increased biological capacity of EGCG can be attributed to the structural changes to EGCG in H2O, induced by cold plasma irradiation.  相似文献   

10.
The analytical performance of the clay paste electrode and graphene paste electrode was compared using square wave voltammetry (SWV) and cyclic voltammetry (CV). The comparison was made on the basis of a paracetamol (PA) determination on both working electrodes. The influence of pH and SWV parameters was investigated. The linear concentration ranges were found to be 6.0 × 10−7–3.0 × 10−5 and 2.0 × 10−6–8.0 × 10−5 mol L−1 for clay paste electrode (ClPE) and graphene paste electrode (GrPE), respectively. The detection and quantification limits were calculated as 1.4 × 10−7 and 4.7 ×10−7 mol L−1 for ClPE and 3.7 × 10−7 and 1.2 × 10−6 mol L−1 for GrPE, respectively. Developed methods were successfully applied to pharmaceutical formulations analyses. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to characterize ClPE and GrPE surfaces. Clay composition was examined with wavelength dispersive X-ray (WDXRF).  相似文献   

11.
Contactless interactions of micro/nano-particles near electrochemically or chemically active interfaces are ubiquitous in chemistry and biochemistry. Forces arising from a convective field, an electric field or chemical gradients act on different scales ranging from few microns down to few nanometers making their study difficult. Here, we correlated optical microscopy and electrochemical measurements to track at the millisecond timescale the dynamics of individual two-dimensional particles, graphene nanoplatelets (GNPs), when approaching an electrified Pt micro-interface. Our original approach takes advantage of the bipolar feedback current recorded when a conducting particle approaches an electrified surface without electrical contact and numerical simulations to access the velocity of individual GNPs. We evidenced a strong deceleration of GNPs from few tens of μm s−1 down to few μm s−1 within the last μm above the surface. This observation reveals the existence of strongly non-uniform forces between tens of and a thousand nanometers from the surface.

The velocity of single GNP is monitored by contactless bipolar electrochemical feedback over the last hundreds of nm before collision on an electrode, and the variations shed light on the balance of forces acting on these objects near an interface.  相似文献   

12.
We explored the effects of different light intensities and photoperiods on the growth, nutritional quality and antioxidant properties of two Brassicaceae microgreens (cabbage Brassica oleracea L. and Chinese kale Brassica alboglabra Bailey). There were two experiments: (1) four photosynthetic photon flux densities (PPFD) of 30, 50, 70 or 90 μmoL·m−2·s−1 with red:blue:green = 1:1:1 light-emitting diodes (LEDs); (2) five photoperiods of 12, 14, 16, 18 or 20 h·d−1. With the increase of light intensity, the hypocotyl length of cabbage and Chinese kale microgreens shortened. PPFD of 90 μmol·m−2·s−1 was beneficial to improve the nutritional quality of cabbage microgreens, which had higher contents of chlorophyll, carotenoids, soluble sugar, soluble protein and vitamin C, as well as increased antioxidant capacity. The optimal PPFD for Chinese kale microgreens was 70 μmol·m−2·s−1. Increasing light intensity could increase the antioxidant capacity of cabbage and Chinese kale microgreens, while not significantly affecting glucosinolate (GS) content. The dry and fresh weight of cabbage and Chinese kale microgreens were maximized with a 14-h·d−1 photoperiod. The chlorophyll, carotenoid and soluble protein content in cabbage and Chinese kale microgreens were highest for a 16-h·d−1 photoperiod. The lowest total GS content was found in cabbage microgreens under a 12-h·d−1 photoperiod and in Chinese kale microgreens under 16-h·d−1 photoperiod. In conclusion, the photoperiod of 14~16 h·d−1, and 90 μmol·m−2·s−1 and 70 μmol·m−2·s−1 PPFD for cabbage and Chinese kale microgreens, respectively, were optimal for cultivation.  相似文献   

13.
Boron displays many unusual structural and bonding properties due to its electron deficiency. Here we show that a boron atom in a boron monoxide cluster (B9O) exhibits transition-metal-like properties. Temperature-dependent photoelectron spectroscopy provided evidence of the existence of two isomers for B9O: the main isomer has an adiabatic detachment energy (ADE) of 4.19 eV and a higher energy isomer with an ADE of 3.59 eV. The global minimum of B9O is found surprisingly to be an umbrella-like structure (C6v, 1A1) and its simulated spectrum agrees well with that of the main isomer observed. A low-lying isomer (Cs, 1A′) consisting of a BO unit bonded to a disk-like B8 cluster agrees well with the 3.59 eV ADE species. The unexpected umbrella-like global minimum of B9O can be viewed as a central boron atom coordinated by a η7-B7 ligand on one side and a BO ligand on the other side, [(η7-B7)-B-BO]. The central B atom is found to share its valence electrons with the B7 unit to fulfill double aromaticity, similar to that in half-sandwich [(η7-B7)-Zn-CO] or [(η7-B7)-Fe(CO)3] transition-metal complexes. The ability of boron to form a half-sandwich complex with an aromatic ligand, a prototypical property of transition metals, brings out new metallomimetic properties of boron.

The global minimum of the B9O cluster is found to have an umbrella-like structure, where the central B atom exhibits transition-metal-like bonding properties, coordinated by a η7-B7 ligand on one side and a BO ligand on the other.  相似文献   

14.
Hydro(solvo)thermal reactions of Cd(NO3)2, N-(pyridin-3-ylmethyl)-4-(pyridin-4-yl)-1,8-naphthalimide (NI-mbpy-34), and 5-bromobenzene-1,3-dicarboxylic acid (Br-1,3-H2bdc) afforded a luminescent coordination polymer, {[Cd(Br-1,3-bdc)(NI-mbpy-34)(H2O)]∙2H2O}n (1). Single-crystal X-ray diffraction analysis showed that 1 features a two-dimensional (2-D) gridlike sql layer with the point symbol of (44·62), where the Cd(II) center adopts a {CdO5N2} pentagonal bipyramidal geometry. Thermogravimetric (TG) analysis confirmed the thermal stability of 1 up to about 340 °C, whereas XRPD patterns proved the maintenance of crystallinity and framework integrity of 1 in CH2Cl2, H2O, CH3OH, and toluene. Photoluminescence studies indicated that 1 displayed intense blue fluorescence emissions in both solid-state and H2O suspension-phase. Owing to the good fluorescent properties, 1 could serve as an excellent turn-off fluorescence sensor for selective and sensitive Cr(VI) detection in water, with LOD = 15.15 μM for CrO42 and 14.91 μM for Cr2O72, through energy competition absorption mechanism. In addition, 1 could also sensitively detect Cr3+, Fe3+, and Al3+ ions in aqueous medium via fluorescence-enhancement responses, with LOD = 2.81 μM for Cr3+, 3.82 μM for Fe3+, and 3.37 μM for Al3+, mainly through an absorbance-caused enhancement (ACE) mechanism.  相似文献   

15.
In the present work TiO2 nanotubes (TNT) have been synthesized by alkaline hydrothermal transformation. Then they have been doped with Gd element. Characterizations of doped and undoped TNT have been done with TEM and SEM. The chemical composition was analyzed by EDX, Raman and FTIR spectroscopy. The crystal structure was characterized by XRD. Carbon paste electrode has been fabricated and mixed with Gd doped and undoped TNT to form a nanocomposite working electrode. Comparison of bare carbon paste electrode and Gd doped and undoped TNT carbon paste electrode for 1.0 ×10−3 M K4 [Fe(CN)6] voltammetric analysis; it was observed that Gd doped TNT modified electrode has advantage of high sensitivity. Gd doped TNT modified electrode has been used as working electrode for itopride assay in a pharmaceutical formulation. Cyclic voltammetry analysis showed high correlation coefficient of 0.9973 for itopride (0.04–0.2 mg/mL) with a limit of detection (LOD) and limit of quantitation values (LOQ) of 2.9 and 23.0 μg.mL−1 respectively.  相似文献   

16.
Five new thiohydantoin derivatives (1–5) were isolated from the rhizomes of Lepidium meyenii Walp. NMR (1H and 13C NMR, 1H−1H COSY, HSQC, and HMBC), HRESIMS, and ECD were employed for the structure elucidation of new compounds. Significantly, the structure of compound 1 was the first example of thiohydantoins with thioxohexahydroimidazo [1,5-a] pyridine moiety. Additionally, compounds 2 and 3 possess rare disulfide bonds. Except for compound 4, all isolates were assessed for neuroprotective activities in corticosterone (CORT)-stimulated PC12 cell damage. Among them, compound (−)-3 exhibited moderate neuroprotective activity (cell viability: 68.63%, 20 μM) compared to the positive control desipramine (DIM) (cell viability: 88.49%, 10 μM).  相似文献   

17.
The most prevalent lung cancer is non-small cell lung cancer (NSCLC). This lung cancer type often develops other organ-specific metastases that are critical burdens in the treatment process. Orchid species in the genus Vanda have shown their potential in folkloric medication of diverse diseases but not all its species have been investigated, and little is known about their anticancer activities against NSCLC. Here, we firstly profiled the specialized metabolites of Vanda bensonii and examined their capability to inhibit growth and metastasis of NSCLC using NCI-H460 cells as a study model. Four phytochemicals, including phloretic acid methyl ester (1), cymbinodin-A (2), ephemeranthoquinone B (3), and protocatechuic acid (4), were isolated from the whole plant methanolic extract of V. bensonii. The most distinguished cytotoxic effect on NCI-H460 cells was observed in the treatments with crude methanolic extract and compound 2 with the half maximal inhibitory concentrations of 40.39 μg mL−1 and 50.82 μM, respectively. At non-cytotoxic doses (10 μg mL−1 or 10 μM), only compound 1 could significantly limit NCI-H460 cell proliferation when treated for 48 h, while others excluding compound 4 showed significant reduction in cell proliferation after treating for 72 h. Compound 1 also significantly decreased the migration rate of NCI-H460 cells examined through a wound-healing assay. Additionally, the crude extract and compound 1 strongly affected survival and growth of NCI-H460 cells under anchorage-independent conditions. Our findings proved that natural products from V. bensonii could be promising candidates for the future pharmacotherapy of NSCLC.  相似文献   

18.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

19.
In this work, β-cyclodextrin (β-CD)/mesoporous carbon (CMK-8) nanocomposite was synthesized and used as an electrochemical sensing platform for highly sensitive and selective detection of Cu2+. The morphology and structure of β-CD/CMK-8 were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). In addition, the dates from electrochemical impedance spectroscopy (EIS) and Cyclic voltammetry (CV) demonstrated that the β-CD/CMK-8 possessed a fast electronic transfer rate and large effective surface area. Besides this, the β-CD/CMK-8 composite displayed high enrichment ability toward Cu2+. As a result of these impressive features, the β-CD/CMK-8 modified electrode provided a wide linear response ranging from 0.1 ng·L−1 to 1.0 mg·L−1 with a low detection limit of 0.3 ng·L−1. Furthermore, the repeatability, reproducibility and selectivity of β-CD/CMK-8 towards Cu2+ were commendable. The sensor could be used to detect Cu2+ in real samples. All in all, this work proposes a simple and sensitive method for Cu2+ detection, which provides a reference for the subsequent detection of HMIs.  相似文献   

20.
In this study, the effect of media composition, N/P ratio and cultivation strategy on the formation of carotenoids in a Coelastrella sp. isolate was investigated. A two-stage process utilizing different media in the vegetative stage, with subsequent re-suspension in medium without nitrate, was employed to enhance the formation of carotenoids. The optimal growth and carotenoid content (β-carotene and lutein) in the vegetative phase were obtained by cultivation in M-8 and BG11 media. Use of a N/P ratio of 37.5 and low light intensity of 40 μmol m−2 s−1 (control conditions) led to optimal biomass production of up to 1.31 g L−1. Low concentrations of astaxanthin (maximum of 0.31 wt. %) were accumulated under stress conditions (nitrogen-deficient medium containing 1.5 % of NaCl and light intensity of 500 μmol m−2 s−1), while β-carotene and lutein (combined maximum of 2.12 wt. %) were produced under non-stress conditions. Lipid analysis revealed that palmitic (C16:0) and oleic (C18:1) constituted the main algal fatty acid chains (50.2 ± 2.1% of the total fatty acids), while esterifiable lipids constituted 17.2 ± 0.5% of the biomass by weight. These results suggest that Coelastrella sp. could also be a promising feedstock for biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号