共查询到16条相似文献,搜索用时 0 毫秒
1.
Sara A. Cunha Rita de Castro Ezequiel R. Coscueta Manuela Pintado 《Molecules (Basel, Switzerland)》2021,26(17)
Mussel production generates losses and waste since their commercialisation must be aligned with target market criteria. Since mussels are rich in proteins, their meat can be explored as a source of bioactive hydrolysates. Thus, the main objective of this study was to establish the optimal production conditions through two Box–Behnken designs to produce, by enzymatic hydrolysis (using subtilisin and corolase), hydrolysates rich in proteins and with bioactive properties. The factorial design allowed for the evaluation of the effects of three factors (hydrolysis temperature, enzyme ratio, and hydrolysis time) on protein/peptides release as well as antioxidant and anti-hypertensive properties of the hydrolysates. The hydrolysates produced using the optimised conditions using the subtilisin protease showed 45.0 ± 0.38% of protein, antioxidant activity via ORAC method of 485.63 ± 60.65 µmol TE/g of hydrolysate, and an IC50 for the inhibition of ACE of 1.0 ± 0.56 mg of protein/mL. The hydrolysates produced using corolase showed 46.35 ± 1.12% of protein, antioxidant activity of 389.48 ± 0.21 µmol TE/g of hydrolysate, and an IC50 for the inhibition of ACE of 3.7 ± 0.33 mg of protein/mL. Mussel meat losses and waste can be used as a source of hydrolysates rich in peptides with relevant bioactive properties, and showing potential for use as ingredients in different industries, such as food and cosmetics, contributing to a circular economy and reducing world waste. 相似文献
2.
Monirul Islam Yatao Huang Serajul Islam Bei Fan Litao Tong Fengzhong Wang 《Molecules (Basel, Switzerland)》2022,27(18)
Soybean protein hydrolysates were prepared using two proteolytic enzymes (Alcalase and Protamex) and the degree of hydrolysis (DH) and their functional and antioxidant properties were evaluated. The highest DH value was 20%, with a yield of 19.77% and protein content of 51.64%. The total amino acid content was more than 41% for all protein hydrolysates. The protein hydrolysates from Protamex at pH 2.0 had excellent solubility, emulsifying activity, and foaming capacity, at 83.83%, 95.03 m2/g, and 93.84%, respectively. The water-holding capacity was 4.52 g/g for Alcalase, and the oil-holding capacity was 4.91 g/g for Protamex. The antioxidant activity (62.07%), as measured by the samples’ reaction with DPPH (2,2-diphenyl-1-picrylhydrazyl) and the reducing power (0.27) were the strongest for Protamex. An ABTS activity rate of 70.21% was recorded for Alcalase. These findings indicated a strong potential for the utilization of soybean protein hydrolysates to improve the functional properties and antioxidant activity of soybeans as well as their nutritional values. 相似文献
3.
Armin Mirzapour-Kouhdasht Marco Garcia-Vaquero Jong-Bang Eun Jesus Simal-Gandara 《Molecules (Basel, Switzerland)》2022,27(22)
This study aims to evaluate the potential in vitro antioxidant and anti-obesity activities of watermelon seed protein hydrolysates (WSPH) obtained using different combinations of enzymes alcalase–proteinase K (ALC-PK) and alcalase–actinidin (ALC-ACT). There was a direct relationship between the degree of hydrolysis (DH) and the biological activities of the WSPH, with the highest DPPH (approximately 85%) and lipase inhibitory activities (≈59%) appreciated at DH of 36–37% and 33–35% when using ALC-PK and ALC-ACT, respectively. Following molecular weight fractionation, the ALC-PK WSPH < 3 kDa (F1) assayed at 1 mg.mL−1 had the highest DPPH-radical scavenging (89.22%), ferrous chelating (FC) (79.83%), reducing power (RP) (A 0.51), lipase inhibitory (71.36%), and α-amylase inhibitory (62.08%) activities. The amino acid analysis of ALC-PK WSPH and its fractions revealed a relationship between the biological activity of the extracts and their composition. High contents of hydrophobic amino acids, arginine, and aromatic amino acids were related to high antioxidant, lipase inhibitory, and α-amylase inhibitory activities in the extracts, respectively. Overall, this study revealed that underutilized protein sources such as WSPH, using the appropriate combination of enzymes, could result in the generation of new ingredients and compounds with powerful antioxidant and anti-obesity activities with promising applications as nutraceuticals or functional foods. 相似文献
4.
The emergence of excessive free radicals leads to the destruction of various systems within the body. These free radicals also affect nutritional values, color, taste, and emit an odor akin to rancid food. Most food industries use synthetic antioxidants, such as BHT (butylated hydroxytoluene) or BHA (butylated hydroxy anisole). However, high doses of these can be harmful to our health. Therefore, an antioxidant compounds, such as bioactive peptides from edible animals or plants, have emerged to be a very promising alternative as they reduce potential side effects. This study focused on the purification and identification of antioxidant peptides from protein hydrolysates of wild silkworm pupae (Samia ricini). Antioxidant peptides were purified from the hydrolysate by ultrafiltration and RP-HPLC. The results showed that protein hydrolysate from S. ricini pupae by trypsin with a molecular weight lower than 3 kDa and highly hydrophobic property, exhibited strong DPPH radical scavenging activity and chelating activity. Further identification of peptides from the fraction with the highest antioxidant activity was carried out using LC-MS/MS. Three novel peptides, i.e., Met-Ley-Ile-Ile-Ile-Met-Arg, Leu-Asn-Lys-Asp-Leu-Met-Arg, and Glu-Asn-Ile-Ile-Leu-Phe-Arg, were identified. The results of this study indicated that the protein hydrolysate from S. ricini pupae possessed potent biological activity, and the novel antioxidant peptides could be utilized to develop health-related antioxidants in food industry. 相似文献
5.
The interest in utilizing food-derived compounds therapeutically has been rising. With the growing prevalence of systematic chronic inflammation (SCI), efforts to find treatments that do not result in the side effects of current anti-inflammatory drugs are underway. Bioactive peptides (BAPs) are a particularly promising class of compounds for the treatment of SCI, and the abundance of high-quality seafood processing byproducts (SPB) makes it a favorable material to derive anti-inflammatory BAPs. Recent research into the structural properties of anti-inflammatory BAPs has found a few key tendencies including they tend to be short and of low molecular weight (LMW), have an overall positive charge, contain hydrophobic amino acids (AAs), and be rich in radical scavenging AAs. SPB-derived anti-inflammatory BAPs have been observed to work via inhibition of the NF-κB and MAPK pathways by disrupting the phosphorylation of IκBα and one or more kinases (ERK, JNK, and p38), respectively. Radical scavenging capacity has also been shown to play a significant role in the efficacy of SPB-derived anti-inflammatory BAPs. To determine if SPB-derived BAPs can serve as an effective treatment for SCI it will be important to understand their properties and mechanisms of action, and this review highlights such findings in recent research. 相似文献
6.
Ioulia Georgiopoulou Soultana Tzima Georgia D. Pappa Vasiliki Louli Epaminondas Voutsas Kostis Magoulas 《Molecules (Basel, Switzerland)》2022,27(1)
Microalgae contain an abundance of valuable bioactive compounds such as chlorophylls, carotenoids, and phenolics and, consequently, present great commercial interest. The aim of this work is the study and optimization of recovering the aforementioned components from the microalgae species Chlorella vulgaris through conventional extraction in a laboratory-scale apparatus using a “green” mixture of ethanol/water 90/10 v/v. The effect of three operational conditions—namely, temperature (30–60 °C), duration (6–24 h) and solvent-to-biomass ratio (20–90 mLsolv/gbiom), was examined regarding the extracts’ yield (gravimetrically), antioxidant activity, phenolic, chlorophyll, and carotenoid contents (spectrophotometric assays), as well as concentration in key carotenoids, i.e., astaxanthin, lutein, and β-carotene (reversed-phase–high-performance liquid chromatography (RP–HPLC)). For this purpose, a face-centered central composite design (FC-CCD) was employed. Data analysis resulted in the optimal extraction conditions of 30 °C, for 24 h with 37 mLsolv/gbiom and validation of the predicted models led to 15.39% w/w yield, 52.58 mgextr/mgDPPH (IC50) antioxidant activity, total phenolic, chlorophyll, and carotenoid content of 18.23, 53.47 and 9.92 mg/gextr, respectively, and the total sum of key carotenoids equal to 4.12 mg/gextr. The experimental data and predicted results were considered comparable, and consequently, the corresponding regression models were sufficiently reliable for prediction. 相似文献
7.
Azis Boing Sitanggang Jessica Eka Putri Nurheni Sri Palupi Emmanuel Hatzakis Elvira Syamsir Slamet Budijanto 《Molecules (Basel, Switzerland)》2021,26(13)
The Angiotensin-I-converting enzyme (ACE) is a peptidase with a significant role in the regulation of blood pressure. Within this work, a systematic review on the enzymatic preparation of Angiotensin-I-Converting Enzyme inhibitory (ACEi) peptides is presented. The systematic review is conducted by following PRISMA guidelines. Soybeans and velvet beans are known to have high protein contents that make them suitable as sources of parent proteins for the production of ACEi peptides. Endopeptidase is commonly used in the preparation of soybean-based ACEi peptides, whereas for velvet bean, a combination of both endo- and exopeptidase is frequently used. Soybean glycinin is the preferred substrate for the preparation of ACEi peptides. It contains proline as one of its major amino acids, which exhibits a potent significance in inhibiting ACE. The best enzymatic treatments for producing ACEi peptides from soybean are as follows: proteolytic activity by Protease P (Amano-P from Aspergillus sp.), a temperature of 37 °C, a reaction time of 18 h, pH 8.2, and an E/S ratio of 2%. On the other hand, the best enzymatic conditions for producing peptide hydrolysates with high ACEi activity are through sequential hydrolytic activity by the combination of pepsin-pancreatic, an E/S ratio for each enzyme is 10%, the temperature and reaction time for each proteolysis are 37 °C and 0.74 h, respectively, pH for pepsin is 2.0, whereas for pancreatin it is 7.0. As an underutilized pulse, the studies on the enzymatic hydrolysis of velvet bean proteins in producing ACEi peptides are limited. Conclusively, the activity of soybean-based ACEi peptides is found to depend on their molecular sizes, the amino acid residues, and positions. Hydrophobic amino acids with nonpolar side chains, positively charged, branched, and cyclic or aromatic residues are generally preferred for ACEi peptides. 相似文献
8.
Sari Mkinen Jaakko Hiidenhovi Xin Huang Amanda dos Santos Lima Luciana Azevedo Jari Setl Anna-Liisa Vlimaa Pirjo Mattila Daniel Granato 《Molecules (Basel, Switzerland)》2022,27(18)
This study aimed to produce bioactive protein hydrolysates from undervalued fish, namely Baltic herring, and its filleting by-products. Protein hydrolysates were produced with Alcalase and Flavourzyme to achieve effective hydrolysis. The hydrolysates were evaluated for chemical composition, molecular weight distribution, antioxidant capacity, dipeptidyl-peptidase 4 (DPP4) inhibitory activity, effects on cell proliferation and surface hydrophobicity. The protein content of the hydrolysates was high, from 86% to 91% (dm), while the fat content was low, from 0.3% to 0.4% (dm). The hydrolysates showed high DPP4 inhibition activities with IC50 values from 5.38 mg/mL to 7.92 mg/mL. The scavenging activity of the hydrolysates towards DPPH was low, but an intermediate Folin–Ciocalteu reducing capacity and Cu2+ chelating ability was observed. The solid phase extraction with Sep-Pak C18 cartridges increased the DPP4 inhibition activity and antioxidant capacity, indicating peptides’ crucial role in the bioactivities. The cytotoxicity of the hydrolysates was evaluated on the HCT8, IMR90, and A549 cell lines. The hydrolysates inhibited cell growth in the cancer and normal cells, although they did not reduce cell viability and were not lethal. Overall, our results indicate that protein hydrolysates from Baltic herring have potential as health-promoting foods and nutraceuticals, especially for enhancing healthy blood glucose regulation. 相似文献
9.
Ioulia Georgiopoulou Soultana Tzima Vasiliki Louli Kostis Magoulas 《Molecules (Basel, Switzerland)》2022,27(18)
Microalgae are well-known for their high-added value compounds and their recovery is currently of great interest. The aim of this work is the recovery of such components from Chlorella vulgaris through supercritical fluid extraction (SFE) with CO2. The effect of the extraction temperature (40–60 °C), pressure (110–250 bar), and solvent flow rate (20–40 g/min) was tested on yield, the extract’s antioxidant activity, and the phenolic, chlorophyll and carotenoid content. Thus, data analysis indicated that the yield was mainly affected by temperature, carotenoids by pressure, while the extract’s phenolics and antioxidant activity were affected by the synergy of temperature and pressure. Moreover, SFE’s kinetic study was performed and experimental data were correlated using Sovová’s mass transfer-based model. SFE optimization (60 °C, 250 bar, 40 g/min) led to 3.37% w/w yield, 44.35 mgextr/mgDPPH antioxidant activity (IC50), 18.29 mgGA/gextr total phenolic content, 35.55, 21.14 and 10.00 mg/gextr total chlorophyll, carotenoid and selected carotenoid content (astaxanthin, lutein and β-carotene), respectively. A comparison of SFE with conventional aq. ethanol (90% v/v) extraction proved SFE’s superiority regarding extraction duration, carotenoids, antioxidant activity and organoleptic characteristics of color and odor despite the lower yield. Finally, cosolvent addition (ethanol 10% w/w) at optimum SFE conditions improved the extract’s antioxidant activity (19.46%) as well as yield (101.81%). 相似文献
10.
Maria Tarapatskyy Aleksandra Gumienna Patrycja Sowa Ireneusz Kapusta Czesaw Puchalski 《Molecules (Basel, Switzerland)》2021,26(4)
Our experiments may help to answer the question of whether cowslip (Primula veris L.) is a rich source of bioactive substances that can be obtained by efficient extraction with potential use as a food additive. A hypothesis assumed that the type of solvent used for plant extraction and the individual morphological parts of Primula veris L. used for the preparation of herbal extracts will have key impacts on the efficiency of the extraction of bioactive compounds, and thus, the health-promoting quality of plant concentrates produced. Most analysis of such polyphenolic compound contents in extracts from Primula veris L. has been performed by using chromatography methods such as ultra-performance reverse-phase liquid chromatography (UPLC−PDA−MS/MS). Experiments demonstrated that the most effective extraction agent for fresh study material was water at 100 °C, whereas for dried material it was 70% ethanol. The richest sources of polyphenolic compounds were found in cowslip primrose flowers and leaves. The aqueous and ethanol extracts from Primula veris L. were characterized by a quantitatively rich profile of polyphenolic substances, and a high antioxidative potential. Selective extraction with the use of mild conditions and neutral solvents is the first step to obtaining preparations from cowslip primrose with a high content of bioactive substances. 相似文献
11.
Fabin Fernndez-Luqueo Gabriela Medina-Prez Elizabeth Prez-Soto Salvador Espino-Manzano Laura Peralta-Adauto Sergio Prez-Ríos Rafael Campos-Montiel 《Molecules (Basel, Switzerland)》2021,26(21)
The acid fruit of the "xoconostle" cactus belongs to the genus Opuntia family of cacti. It is used as a functional food for its bioactive compounds. Several studies reported that xoconostle fruits have a high amount of ascorbic acid, betalains, phenols, tannins, and flavonoids. These compounds confer antioxidant, antibacterial, anti-inflammatory, and hepatoprotective gastroprotective activity. Xoconostle fruit extracts were tested by in vitro assays where the digestion conditions were simulated to measure their stability. At the same time, the extracts were protected by encapsulation (microencapsulation, multiple emulsions, and nanoemulsions). Applications of encapsulated extracts were probed in various food matrices (edible films, meat products, dairy, and fruit coatings). The xoconostle is a natural source of nutraceutical compounds, and the use of this fruit in the new food could help improve consumers’ health. 相似文献
12.
Ismail Guenaou Imane Nait Irahal Ahmed Errami Fatima Azzahra Lahlou Fouzia Hmimid Noureddine Bourhim 《Molecules (Basel, Switzerland)》2021,26(19)
Response surface methodology (RSM) with a Box–Behnken design (BBD) was used to optimize the extraction of bioactive compounds from Ephedra fragilis. The results suggested that extraction with 61.93% ethanol at 44.43 °C for 15.84 h was the best solution for this combination of variables. The crude ethanol extract (CEE) obtained under optimum extraction conditions was sequentially fractionated with solvents of increasing polarity. The content of total phenolic (TP) and total flavonoid (TF) as well as the antioxidant and antiglycation activities were measured. The phytochemical fingerprint profile of the fraction with the highest activity was characterized by using RP-HPLC. The ethyl acetate fraction (EAF) had the highest TP and TF contents and exhibited the most potent antioxidant and antiglycation activities. The Pearson correlation analysis results showed that TP and TF contents were highly significantly correlated with the antioxidant and antiglycation activities. Totally, six compounds were identified in the EAF of E. fragilis, including four phenolic acids and two flavonoids. Additionally, molecular docking analysis also showed the possible connection between identified bioactive compounds and their mechanisms of action. Our results suggest new evidence on the antioxidant and antiglycation activities of E. fragilis bioactive compounds that may be applied in the treatment and prevention of aging and glycation-associated complications. 相似文献
13.
Lisha Zhu Jianfeng Wang Yincheng Feng Hua Yin Huafa Lai Ruoshi Xiao Sijia He Zhaoxia Yang Yi He 《Molecules (Basel, Switzerland)》2022,27(20)
Repurposing of waste beer yeast (WBY) that a main by-product of brewing industry has attracted considerable attention in recent years. In this study, the protein and polypeptide were extracted by ultrasonic-assisted extraction and enzymatic hydrolysis with process optimization, which resulted in a maximum yield of 73.94% and 61.24%, respectively. Both protein and polypeptide of WBY were composed of 17 Amino acids (AA) that included seven essential amino acids (EAA), and typically rich in glutamic acid (Glu) (6.46% and 6.13%) and glycine (Gly) (5.26% and 6.02%). AA score (AAS) revealed that the threonine (Thr) and SAA (methionine + cysteine) were the limiting AA of WBY protein and polypeptide. Furthermore, the antioxidant activities of WBY polypeptide that lower than 10 kDa against hydroxyl radical, DPPH radical, and ABTS radical were 95.10%, 98.37%, and 69.41%, respectively, which was significantly higher than that of WBY protein (25–50 kDa). Therefore, the protein and polypeptide extracted from WBY can be a source of high-quality AA applying in food and feed industry. Due to small molecular weight, abundant AA, and great antioxidant activity, WBY polypeptide can be promisingly used as functional additives in the pharmaceutical and healthcare industry. 相似文献
14.
Dariusz Dziki Urszula Gawlik-Dziki Wojciech Tarasiuk Renata Ryo 《Molecules (Basel, Switzerland)》2022,27(9)
This study aimed to investigate the possibility of utilizing oat by-products for fiber preparation. Oat husk (OH) and oat bran (OB) were micronized and used to prepare a novel product rich in fiber and with enhanced antioxidant properties. The basic chemical composition and phenolic acid profile were determined in OH and OB. The antioxidant properties of OH and OB were also analyzed. The type and strength of interactions between the biologically active compounds from their mixtures were characterized by an isobolographic analysis. The analyses showed that the sum of phenolic acids was higher in OH than in OB. Ferulic acid was dominant in both OH and OB; however, its content in OH was over sixfold higher than that in OB. The results also suggested that both OH and OB can be used for preparing fiber with enhanced antioxidant properties. The optimal composition of the preparation, with 60–70% of OH and 30–40% of OB, allows for obtaining a product with 60–70% fiber and enhanced antioxidant activity due to bioactive substances and their synergistic effect. The resulting product can be a valuable additive to various food and dietary supplements. 相似文献
15.
Nishan Chakrabarty Hea-Jong Chung Rashedul Alam Nazim Uddin Emon Safaet Alam Mohammed Fazlul Kabir Md. Minarul Islam Seong-Tshool Hong Tapas Sarkar Md. Moklesur Rahman Sarker Mohammad Manjur Rahman 《Molecules (Basel, Switzerland)》2022,27(11)
Gynura nepalensis D.C. (family: Asteraceae) has abundant uses in the alternative medicinal practice, and this species is commonly used in the treatment of diabetes, rheumatism, cuts or wounds, asthma, kidney stones, cough, urinary tract bleeding, gall bladder stones, hepatitis, diarrhea, hemorrhoids, constipation, vomiting, fertility problems, blood poisoning, septicemia, skin allergy, indigestion, high cholesterol levels, and so on. This study aims to investigate the hepatoprotective and antioxidant potential of the methanol extract of the Gynura nepalensis D.C. (GNME) along with chemical profiling with phytochemical screening. Moreover, prospective phytocompounds have been screened virtually to present the binding affinity of the bioactive components to the hepatic and oxidative receptors. In the hepatoprotective study, alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein (TP), and lipid peroxidation (LP) and total bilirubin (TB) have been assessed, and in the antioxidant study, the DPPH free radical scavenging, total antioxidant flavonoid, and phenolic contents were determined. Moreover, the molecular binding affinity of the bioactive component of the plant has been analyzed using PyRx AutoDock Vina, Chimera, and Discovery Studio software. The plant extract showed dose-dependent hepatoprotective potential (p < 0.05, 0.01, 0.001) as well as strong antioxidant properties. Moreover, hepatoprotective and antioxidant molecular docking studies revealed a result varying from −2.90 kcal/mol to −10.1 kcal/mol. 4,5-dicaffeoylquinic acid and chlorogenic acid revealed the highest binding affinity among the selected molecules. However, the plant showed portent antioxidant and hepatoprotective properties in the in vitro, in vivo, and in silico models, and it is presumed that the hepatoprotective properties of the plant extract have occurred due to the presence of the vast bioactive chemical compounds as well as their antioxidant properties. Therefore, advanced studies are recommended to elucidate the pharmacological properties of the plant extracts. 相似文献
16.
Gokhan Zengin María de la Luz Cdiz-Gurrea lvaro Fernndez-Ochoa Francisco Javier Leyva-Jimnez Antonio Segura Carretero Malwina Momotko Evren Yildiztugay Refik Karatas Sharmeen Jugreet Mohamad Fawzi Mahomoodally Grzegorz Boczkaj 《Molecules (Basel, Switzerland)》2022,27(18)
In the present study, the extracts of Cytinus hypocistis (L.) L using both traditional solvents (hexane, ethyl acetate, dichloromethane, ethanol, ethanol/water, and water) and natural deep eutectic solvents (NADESs) were investigated in terms of their total polyphenolic contents and antioxidant and enzyme-inhibitive properties. The extracts were found to possess total phenolic and total flavonoid contents in the ranges of 26.47–186.13 mg GAE/g and 0.68–12.55 mg RE/g, respectively. Higher total phenolic contents were obtained for NADES extracts. Compositional differences were reported in relation to antioxidant potential studied by several assays (DPPH: 70.19–939.35 mg TE/g, ABTS: 172.56–4026.50 mg TE/g; CUPRAC: 97.41–1730.38 mg TE/g, FRAP: 84.11–1534.85 mg TE/g). Application of NADESs (choline chloride—urea 1:2, a so-called Reline) allowed one to obtain the highest number of extracts having antioxidant potential in the radical scavenging and reducing assays. NADES-B (protonated by HCl L-proline-xylitol 5:1) was the only extractant from the studied solvents that isolated a specific fraction without chelating activity. Reline extract exhibited the highest acetylcholinesterase inhibition compared to NADES-B and NADES-C (protonated by H2SO4 L-proline-xylitol 5:1) extracts, which showed no inhibition. The NADES extracts were observed to have higher tyrosinase inhibitory properties compared to extracts obtained by traditional organic solvents. Furthermore, the NADES extracts were relatively better inhibitors of the diabetic enzymes. These findings provided an interesting comparison in terms of total polyphenolic content yields, antioxidant and enzyme inhibitory properties (cholinesterase, amylase, glucosidase, and tyrosinase) between traditional solvent extracts and NADES extracts, used as an alternative. While the organic solvents showed better antioxidant activity, the NADES extracts were found to have some other improved properties, such as higher total phenolic content and enzyme-inhibiting properties, suggesting functional prospects for their use in phytonutrient extraction and fractionation. The obtained results could also be used to give a broad overview of the different biological potentials of C. hypocistis. 相似文献